

Finding Surface Correspondences With Shape Analysis

Thomas Funkhouser COS 526, Fall 2016

Finding surface correspondences is important for understanding relationships in 3D data

Applications:

- Similarity measurement
- Collection exploration
- Surface interpolation
- Annotation transfer
- Surface registration
- Symmetry detection
- Saliency estimation
- Object recognition
- Visualization
- etc.

Applications:

- Similarity measurement
- Collection exploration
- Surface interpolation
- Annotation transfer
- Surface registration
- Symmetry detection
- Saliency estimation
- Object recognition
- Visualization
- etc.

Applications:

- Similarity measurement
- Collection exploration
- Surface interpolation
- Annotation transfer
- Surface registration
- Symmetry detection
- Saliency estimation
- Object recognition
- Visualization
- etc.

Goal

Develop algorithms to find point correspondences

- Align "equivalent" features (semantic, functional, etc.)
- Consistent
- Robust
- Automatic
- Efficient

Previous Work

Classical methods:

- Local features
- Global maps

Previous Work

Challenge

Classical methods don't work well for shapes with large local and global shape differences

Hypothesis

Discovering latent structure can be helpful for finding surface correspondences

Introduction

Latent structures

- Symmetries
- Parts
- Affordances
- Constraints
- Assemblies

Conclusion

Introduction

Latent structures

- Symmetries
- Parts
- Affordances
- Constraints
- Assemblies

Conclusion

Symmetry-Aware Correspondences

Observation 1: symmetry is ubiquitous in natural shapes

Symmetry-Aware Correspondences

Observation 2: detecting symmetries is easier than finding correspondences

Symmetry-Aware Correspondences

Approach: detect reflective symmetry axes and use them to find correspondences

Symmetry Axis Detection

Given a mesh, extract potential symmetry axes

Symmetry Axis Alignment

For every pair of symmetry axes, find optimal alignment for every pair of starting points

 $Q(C_{1}^{i}, C_{2}^{j}, c) = Q_{Axis}(C_{1}^{i}) \cdot Q_{Axis}(C_{2}^{j}) \cdot Q_{Align}(C_{1}^{i}, C_{2}^{j}, c)$

Correspondence Extrapolation

Given an alignment between symmetry axes, extrapolate correspondences to rest of surfaces

Aligned Symmetry Axes Aligned Extremal Feature Points Full Surface Map

Symmetry-Aware Correspondence Evaluation

Surface Correspondence Benchmark [Kim 2011]

TOSCA [Bronstein et al., 2008]

SCAPE [Anguelov et al., 2004]

SHREC Watertight 2007 [Giorgi et al., 2007]

Symmetry-Aware Correspondence Results

Symmetry-Aware Correspondence Results

Comparison to Blended Intrinsic Maps [Kim 2011]

Introduction

- Latent structures
 - Symmetries
 - Parts
 - Affordances
 - Constraints
 - Assemblies

Conclusion

Observation: semantic correspondences are often based on parts

Consistent segmentation

Approach: learn part-based templates for collection of models and use them to find correspondences

Part-Aware Correspondence Algorithm

Search for a set of templates that best explains a collection of models

Part-Aware Correspondence Results

Part-Aware Correspondence Results

Introduction

- Latent structures
 - Symmetries
 - Parts
 - > Affordances
 - Constraints
 - Assemblies

Conclusion

Affordance-Aware Correspondences

Observation 1: almost all man-made objects are used by people

Affordance-Aware Correspondences

Observation 2: the poses people take when using objects reveal functional correspondences

Affordance-Aware Correspondences

Approach: predict poses of people and use them to find correspondences

Pose Prediction Algorithm

Pose Parameters

- Contact points
- Joint Angles

Energy Function

- Contact Distance
- Feature Compatibility
- Pose Prior
- Symmetry
- Surface intersections

Search Procedure

- Sample pose parameters
- Solve contact points or joint angles (inverse kinematics)
- Evaluate energy function

Pose Prediction Results

Pose Prediction Results

Pose Prediction Results

Pose Prediction Failures

Affordance Correspondence Results

Introduction

Latent structures

- Symmetries
- Parts
- Affordances
- Constraints
- Assemblies

Conclusion

Observation 1: global registration of RGB-D scans requires finding "loop closure" correspondences

Observation 2: almost all indoor environments follow the Manhattan World assumption

Intel Research Lab in Seattle

Observation 2: almost all indoor environments follow the Manhattan World assumption

- Orthogonal corners
- Parallel surfaces

Intel Research Lab in Seattle

Approach: detect and enforce Manhattan World constraints and use them to find correspondences

Camera Tracking without Constraints

Global Registration with Constraints

[Halber et al., submitted]

Constraint-Aware ICP Algorithm

Like a global ICP algorithm ...

Constraint-Aware ICP Algorithm

... but detect constraint model in inner loop, and ...

Constraint-Aware ICP Algorithm

... optimize correspondences and constraints jointly

Constraint-Aware ICP Issue

How detect constraints in warped point clouds?

Iteratively:

- 1. Detect constraints within windows of size w
- 2. Optimize
- 3. Increase w

Creates hierarchy of structure and constraints

Fixes corners, straighten walls, ...

Fixes corners, straighten walls, closes loops, ...

Fixes corners, straighten walls, closes loops, snaps

Fine-to-Coarse Registration Example

Comparison to previous methods:

SUN3D

[Xiao et al., 2013]

[Choi et al., 2015]

Ours

Comparison to previous methods:

[Xiao et al., 2013]

Ours

Comparison to previous methods:

[Choi et al., 2015]

Comparison to previous methods:

Introduction

Latent structures

- Symmetries
- Parts
- Affordances
- Constraints
- > Assemblies

Conclusion

Assembly-Aware Correspondences

Observation 1: assembling fractured objects requires finding complementary surface correspondences

Fragments of fractured wall painting from Akrotiri [Doumas et al.]

Assembly-Aware Correspondences

Observation: fracture correspondences are constrained by latent structure of global assembly

Scanned Fragments Candidate Correspondences Assembly of Correspondences

Assembly-Aware Correspondences

Approach: search for global assembly directly

Scanned Fragments

Global Assembly

[Sizikova et al., submitted]

Assembly Search Algorithm

Genetic algorithm:

Assembly Search Result

Able to predict correspondences with higher precision and recall with our genetic algorithm

Pairwise Correspondences

Ground Truth

Our Result

Assembly Search Result

Able to predict correspondences with higher precision and recall with our genetic algorithm

Pairwise Correspondences

[Hierarchical Clustering]

Our Result

Ground Truth

[Casteneda et al., 2011]

Assembly Search Result

Precision of predicted correspondences gets better as recall increases during our genetic search

Conclusion

Discovering latent structure can be useful for finding correspondences

- Symmetries
- Parts
- Affordances
- Constraints
- Assemblies

Future work on surface correspondence should focus more on structure and semantics

 Hierarchies, supports, contexts, shape priors, physical properties, manufacturing methods, etc.

Acknowledgments

Collaborators:

 Sid Chaudhuri, Steve Diverdi, Leo Guibas, Maciej Halber, Vladimir Kim, Yaron Lipman, Tianqiang Liu, Wilmot Li, Niloy Mitra, Elena Sizikova

Data sets:

 Bronstein et al. (TOSCA), Brown et al. (3D Warehouse), Giorgi et al. (SHREC Watertight), Anguelov et al. (SCAPE), Xiao et al. (SUN3D), Weyrich et al. (Fresco)

Research funding:

• Intel, Adobe, Google, NSF

Thank You!