Multiresolution Meshes

COS 526

Tom Funkhouser, Fall 2016

Slides by Guskov,
Praun, Sweldens, etc.

Motivation

Huge meshes are difficult to

- render
- store
- transmit
- edit

→ Multiresolution Meshes!

Multiresolution Meshes

Irregular Semi-regular

Completely regular

Multiresolution Meshes

Irregular

Semi-regular

Completely regular

Encode mesh simplification operations in tree

- Cut through tree defines a mesh
- Move cut up/down to simplify/refine

Xia96, Hoppe97, Luebke97

Encode continuous detail as sequence of edge collapses

Simplification process

Inversion is possible with vertex split transformation

Reconstruction process

From PM, extract M_i of any desired complexity (this is multiresolution)

3,478 faces?

Benefits/Applications:

- Progressive transmission
- Surface compression
- Selective refinement

Progressive Transmission

Transmit records progressively:

Progressive Transmission

Details added while user is browsing.

[Certain et al.]

Progressive Transmission

Mesh Compression

Lossy compression

Mesh Compression

Lossless compression

Mesh Compression

Encoding of *vspl* records:

- v connectivity: ~ good triangle strips
- v attributes: excellent delta-encoding

Selective Refinement (VDPM)

Refine mesh adaptively based on viewpoint

(e.g. view frustum)


```
1m o
               [ GL
                     sne a p
   nfaces=213 pixel_tol=0.29
```


Progressive Mesh Summary

v single resolution

- v continuous-resolution
- v smooth LOD
- space-efficient
- v progressive

Multiresolution Meshes

Irregular Semi-regular

Completely regular

Semi-Regular Mesh

Arbitrary base mesh + refinement via subdivision

step 1: construct a simple domain mesh K

step 2: construct a parametrization r of M over K

step 3: remesh

Step 1: construct simple base domain

- topological type of K = topological type of M
- small number of triangular regions
- smooth and straight boundaries

Step 2: construct parameterization

 Map each face of domain mesh to corresponding triangular region

local map

Step 2: construct parameterization

- Map each face of domain mesh to corresponding triangular region
- Local maps must agree on boundaries and introduce small distortions → harmonic maps

Step 3: remesh

Regular subdivision

Wavelet representation

base shape M O

+

sum of local correction terms (wavelet terms)

[Guskov et al.]

Burt-Adelson pyramid

Two scalar displacement (t,n)

One scalar (normal mesh)

Normal Mesh

Multiresolution Representation

Normal mesh

Applications:

- Adaptive remeshing
- Compression
- Filtering
- Editing
- Morphing

Adaptive Remeshing

Adaptive Remeshing

Adaptive Remeshing

Both 11K triangles

[Zorin *et al.*]

Applications:

- Adaptive remeshing
- Compression
- Filtering
- Editing
- Morphing

Mesh Compression

Effect of wavelet transform

- changes distribution of coefficients
 - almost all coefficients close to zero

Mesh Compression

Fixed file size

CPM:

Mesh Compression

Applications:

- Adaptive remeshing
- Compression
- > Filtering
- Editing
- Morphing

Smoothing

Multiresolution Mesh Processing

Enhancing

smoothed + 2 * (original - smoothed) = enhanced

Multiresolution Mesh Processing

Filtering

Applications:

- Adaptive remeshing
- Compression
- Filtering
- **Editing**
- Morphing

Goal: edit surface with operations at various resolutions

[Guskov et al.]

When edit at fine resolution, update higher levels of multiresolution hierarchy

Applications:

- Adaptive remeshing
- Compression
- Filtering
- Editing
- ➤ Morphing

Multiresolution Mesh Morphing

Goal: interpolate surfaces

[Lee et al.]

Multiresolution Mesh Morphing

Common parameterization

• If two semi-regular meshes have the same base domain, then they share a common parameterization

Multiresolution Mesh Morphing

Multiresolution

 Can morph different multiresolution levels at different rates

with Spatial Control

[Lee et al.]

Irregular

Semi-regular

Completely regular

Completely Regular Mesh

Regular sampling of parameter domain

Geometry Image

Key ideas

- Multiresolution analysis provides parameterization
- Different resolutions represent different frequencies
- Can map operations in parameter domain to operations on mesh (e.g., smoothing, morphing, etc.)

Acknowledgements

Slides by

- Igor Guskov
- Wim Sweldens
- Peter Schroeder
- Denis Zorin
- Aaron Lee
- Emil Praun
- Michael Lounsberry
- Hugues Hoppe