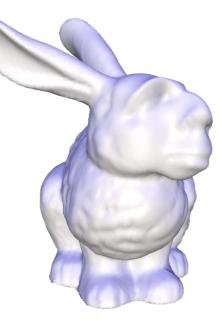
Laplacian Meshes

COS 526 – Fall 2016 Slides from Olga Sorkine and Yaron Lipman

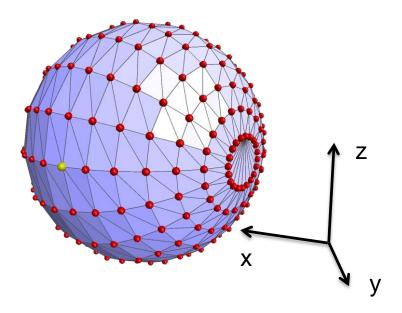
Outline

- Differential surface representation
- Ideas and applications
 - Compact shape representation
 - Mesh editing and manipulation
 - Membrane and flattening
 - Generalizing Fourier basis for surfaces



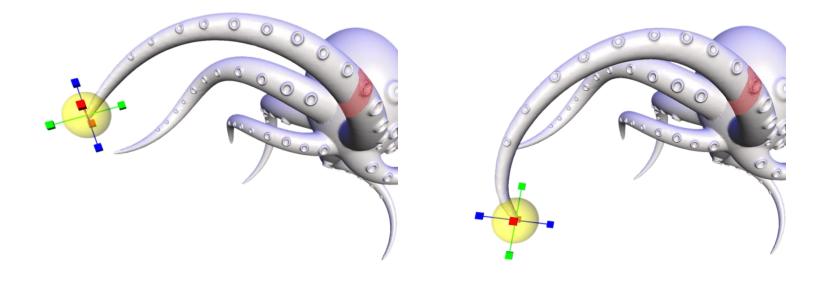
Motivation

- Meshes are great, but:
 - Geometry is represented in a *global* coordinate system
 - Single Cartesian coordinate of a vertex doesn't say much



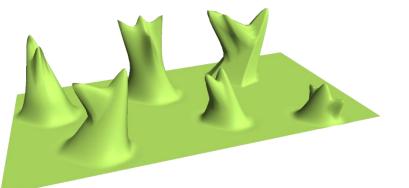
Laplacian Mesh Editing

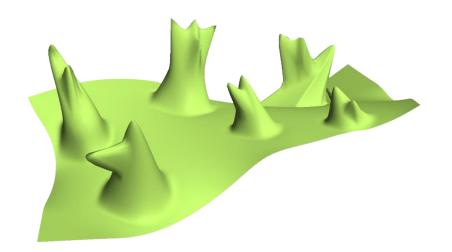
• Meshes are difficult to edit

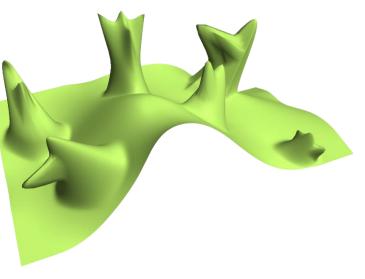


Motivation

• Meshes are difficult to edit

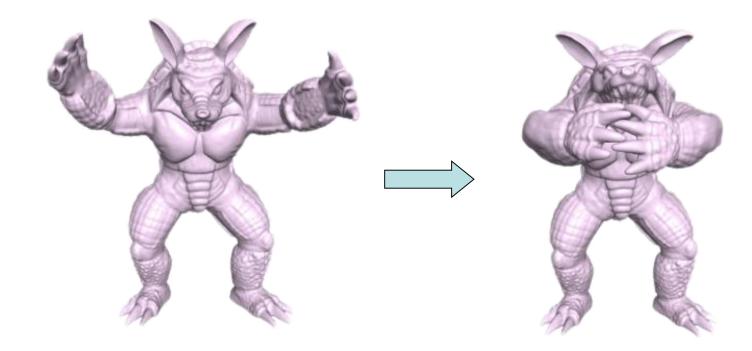






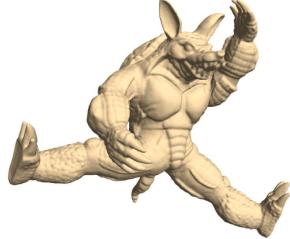
Motivation

• Meshes are difficult to edit



Differential coordinates

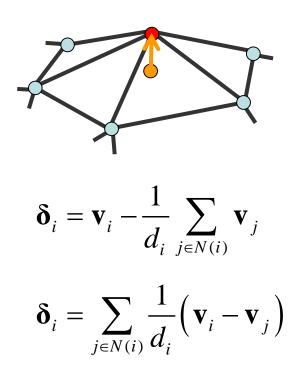
- Represent a point *relative* to it's neighbors.
- Represent *local detail* at each surface point
 better describe the shape
- Linear transition from global to differential
- Useful for operations on surfaces where surface details are important



Differential coordinates

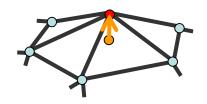
"Local control for mesh morphing", Alexa 01

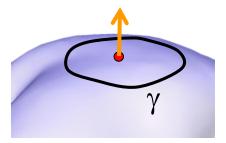
- Detail = surface smooth(surface)
- Smoothing = averaging



Connection to the smooth case

- The direction of δ_i approximates the normal
- The size approximates the mean curvature



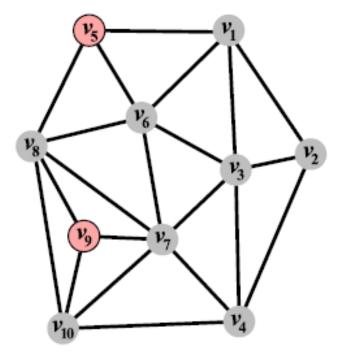


$$\boldsymbol{\delta}_{\mathbf{i}} = \frac{1}{d_i} \sum_{\mathbf{v} \in N(i)} \left(\mathbf{v}_{\mathbf{i}} - \mathbf{v} \right)$$

$$\frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_{\mathbf{i}} - \mathbf{v}) ds$$

$$\lim_{len(\gamma)\to 0} \frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_i - \mathbf{v}) ds = H(\mathbf{v}_i) \mathbf{n}_i$$

Laplacian matrix



The mesh

4	-1	-1		-1	-1				
-1	3	-1	-1						
-1	-1	5	-1		-1	-1			
	-1	-1	4			-1			-1
-1				3	-1		-1		
-1		-1			4	-1	-1		
		-1	-1		-1	6	-1	-1	-1
				-1	-1	-1	6	-1	-1
						-1	-1	3	-1
			-1			-1	-1	-1	4

The symmetric Laplacian Ls

Weighting schemes

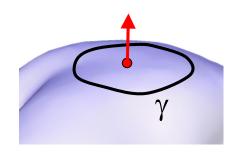
$$\delta_{i} = \frac{\sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j}\right)}{\sum_{j \in N(i)} w_{ij}}$$

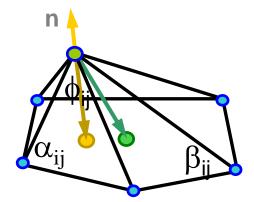
- Ignore geometry δ_{umbrella} : $w_{ij} = 1$
- Integrate over circle around vertex

 $\delta_{\text{mean value}}$: $w_{ij} = \tan \phi_{ij}/2 + \tan \phi_{ij+1}/2$

 Integrate over Voronoi region of vertex

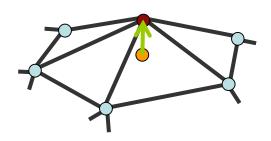
 $\delta_{\text{cotangent}}$: $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$





Laplacian mesh

• Vertex positions are represented by Laplacian coordinates ($\delta_x \delta_y \delta_z$)

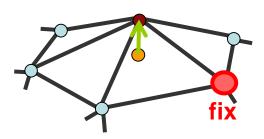


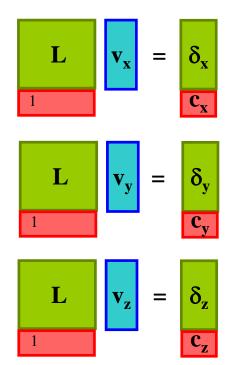
$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)$$

$$\begin{array}{c|c} \mathbf{L} & \mathbf{v}_{\mathbf{x}} & = & \delta_{\mathbf{x}} \\ \hline \mathbf{L} & \mathbf{v}_{\mathbf{y}} & = & \delta_{\mathbf{y}} \\ \hline \mathbf{L} & \mathbf{v}_{\mathbf{z}} & = & \delta_{\mathbf{z}} \end{array}$$

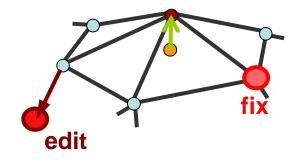
Basic properties

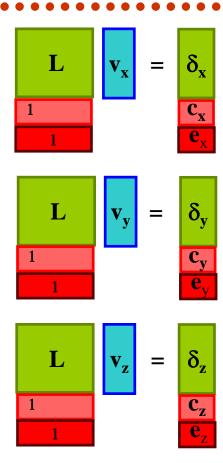
- rank(L) = n c (n 1 for connected meshes)
- We can reconstruct the xyz geometry from δ up to translation



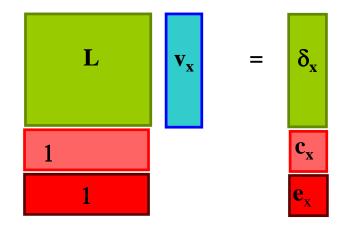


Reconstruction



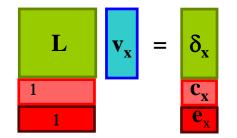


Reconstruction



$$\widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \left(\left\| L\mathbf{x} - \boldsymbol{\delta}_{x} \right\|^{2} + \sum_{s=1}^{k} \left| x_{k} - c_{k} \right|^{2} \right)$$

Reconstruction

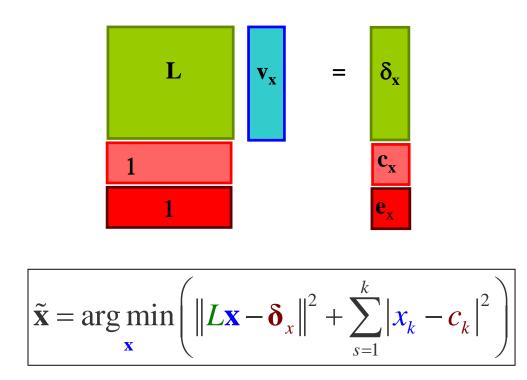


 $\mathbf{A} \mathbf{x} = \mathbf{b}$

Normal Equations: $A^{T}A = A^{T}b$ $x = (A^{T}A)^{-1}A^{T}b$ compute once

Cool underlying idea

• Mesh vertex positions are defined by minimizer of an objective function

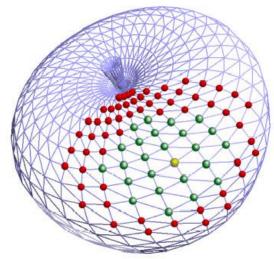


What we have so far

- Laplacian coordinates $\boldsymbol{\delta}$
 - Local representation
 - Translation-invariant
- Linear transition from δ to xyz
 - can constrain more that 1 vertex
 - least-squares solution

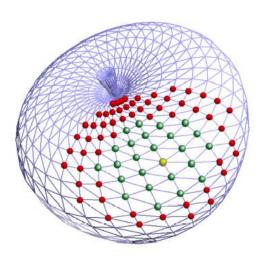
Editing using differential coordinates

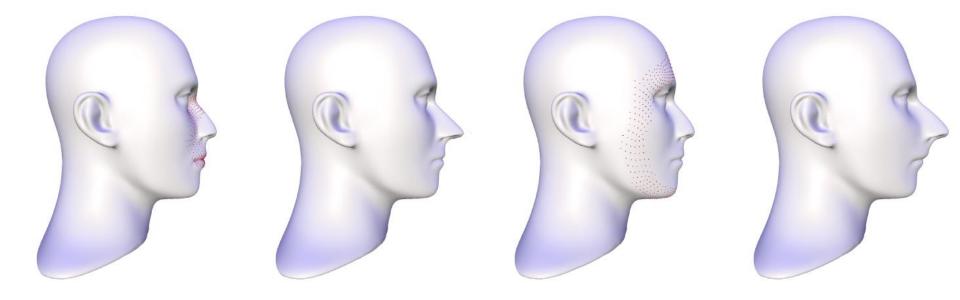
- The editing process from the user's point of view:
- 1) First, a ROI, <u>anchors</u> and a <u>handle vertex</u> should be set.
- Then the edit is
 Performed By moving this vertex.

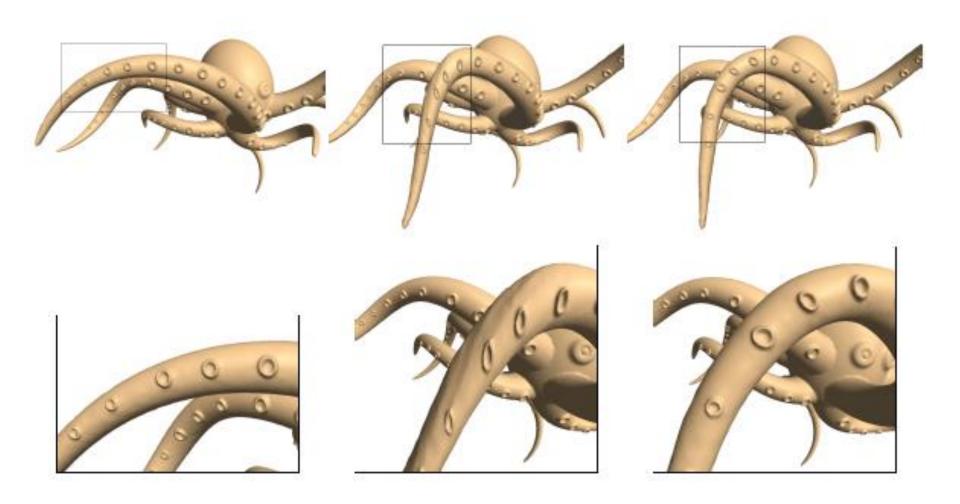


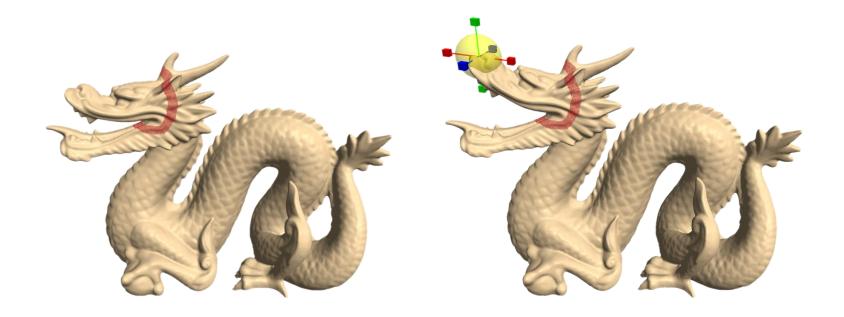
Editing using differential coordinates

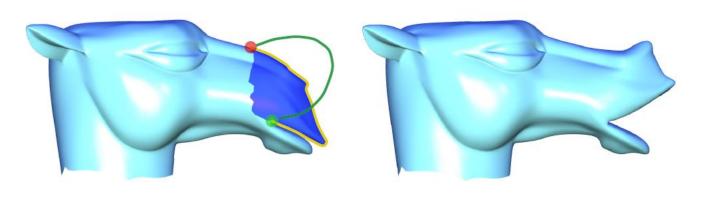
- The user moves the handle and interactively the surface changes.
- The stationary anchors are responsible for smooth transition of the edited part to the rest of the mesh.
- This is done using increasing weight with geodesic distance in the soft spatial equations.

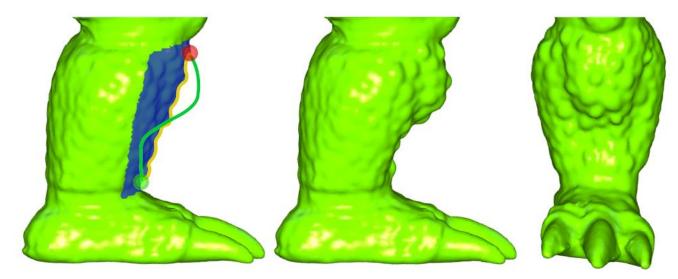








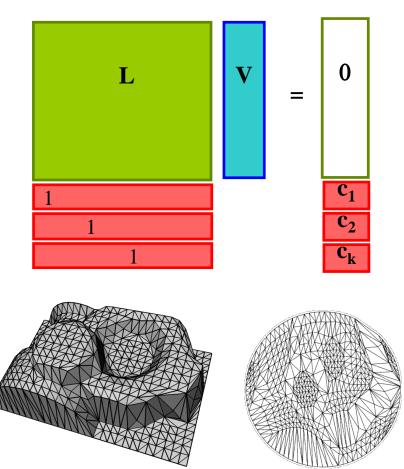




What else can we do with it?

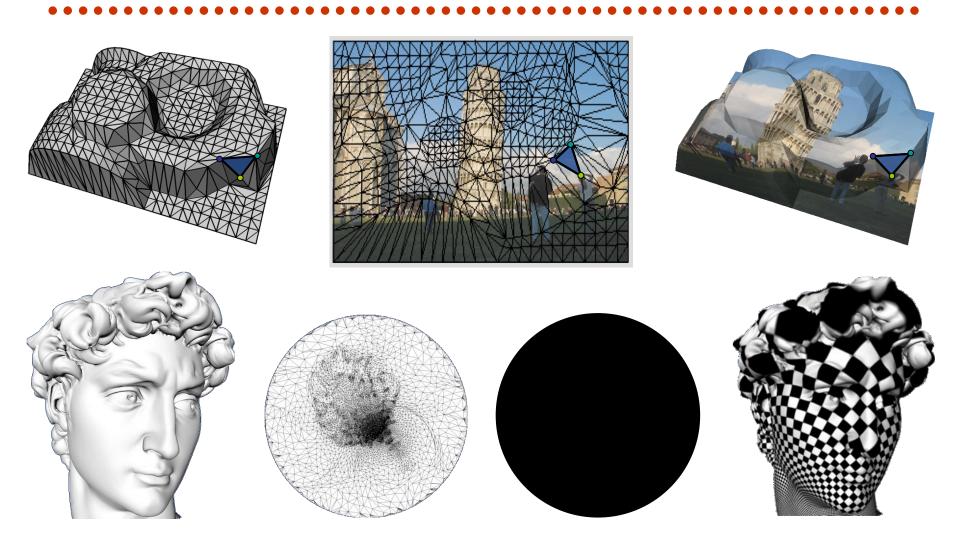
Parameterization

• Use zero Laplacians.

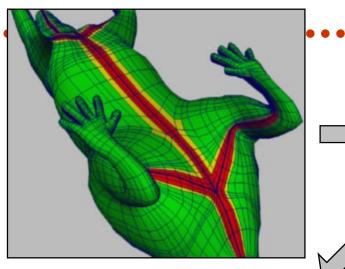


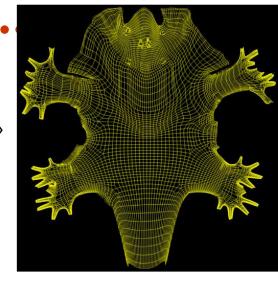
In 2D:

Texture Mapping

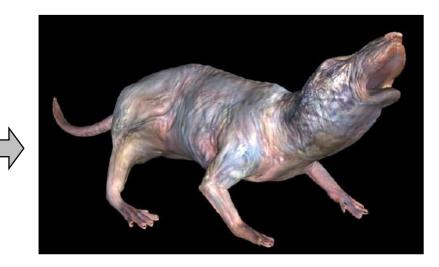


Texture Mapping



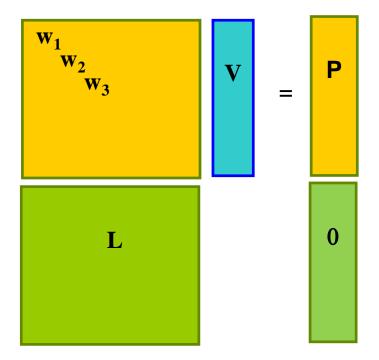


[Piponi2000]



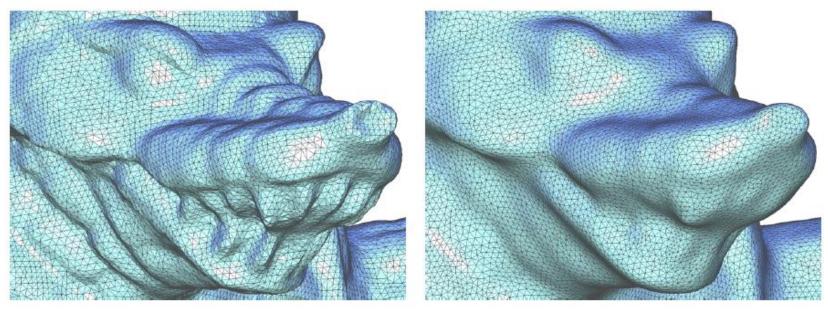
Feature Preserving Smoothing

• Weighted positional and smoothing constraints



Feature Preserving Smoothing

• Weighted positional and smoothing constraints

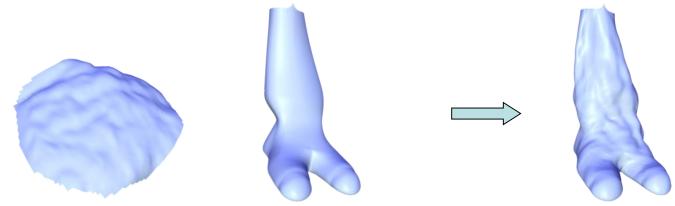


Original

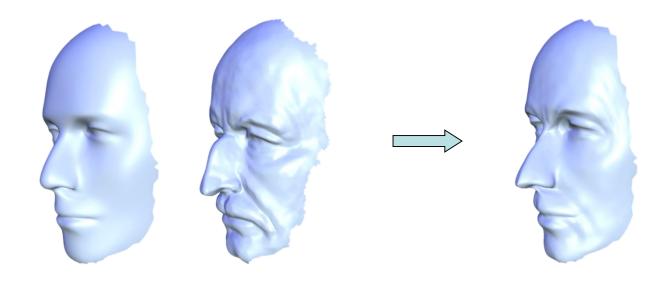
Smoothed

Detail transfer

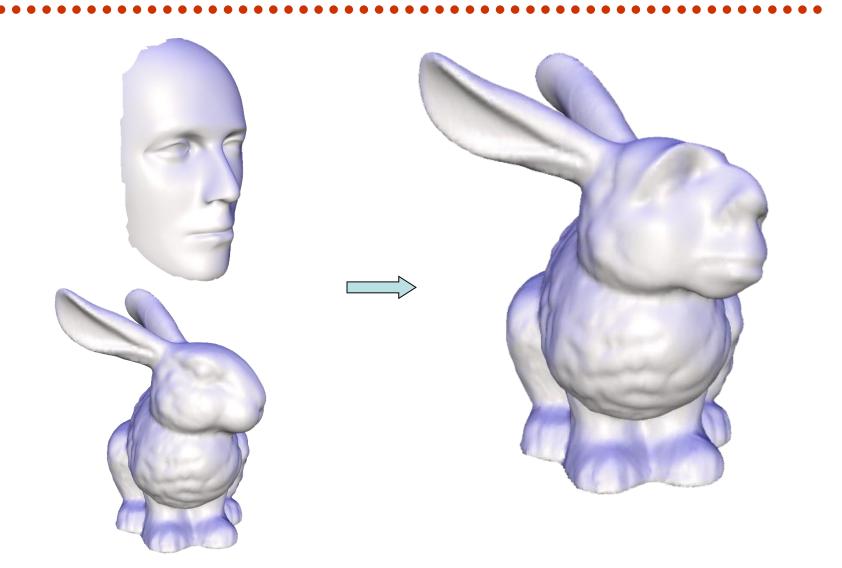
"Peel" the coating of one surface and transfer to another



Detail transfer

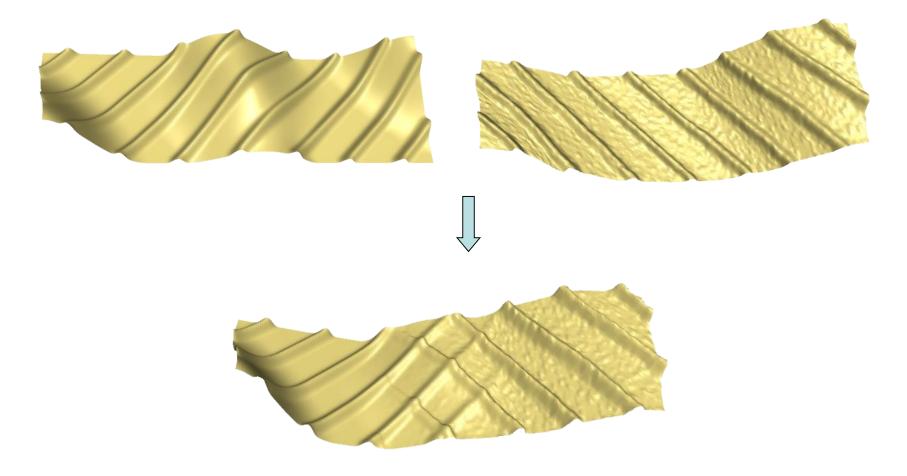


Detail transfer



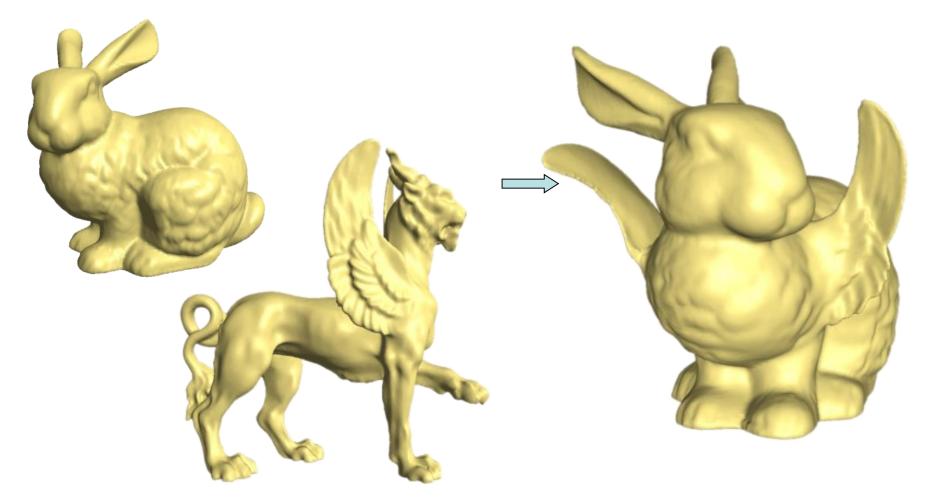
Mixing Laplacians

• Taking weighted average of δ_i and δ'_i



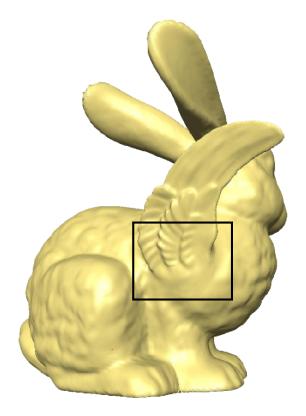
Mesh transplanting

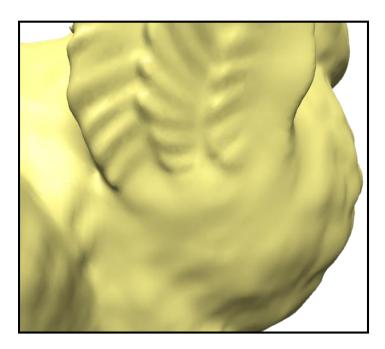
Geometrical stitching via Laplacian mixing



Mesh transplanting

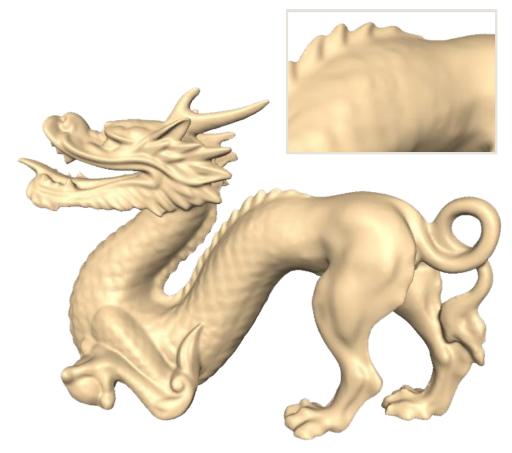
• Details gradually change in the transition area





Mesh transplanting

• Details gradually change in the transition area



The End