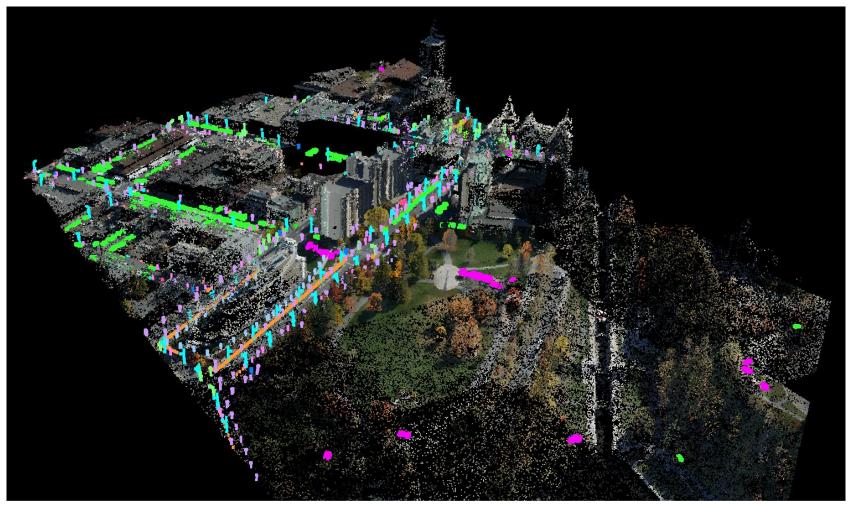
Efficient Interactive Labeling of Small Objects in Urban LIDAR Scans

Thomas Funkhouser Princeton University

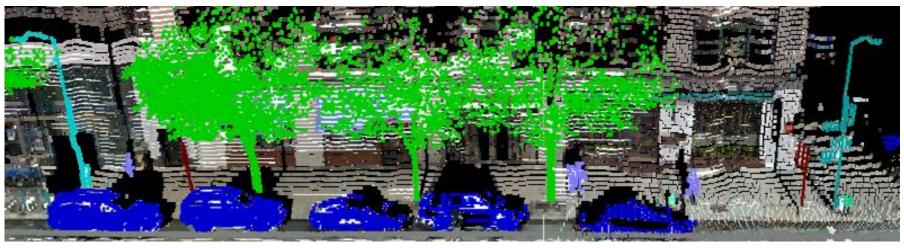
Motivation

Semantic modeling of cities with labeled small objects

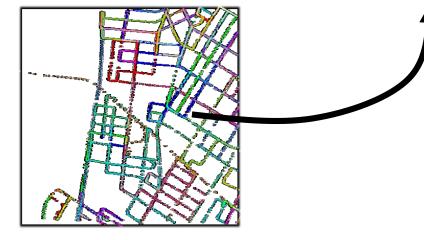


Motivation

Semantic modeling of cities with labeled small objects



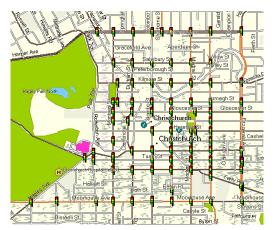
Google Street View



Applications

Mobile augmented reality

Simulation



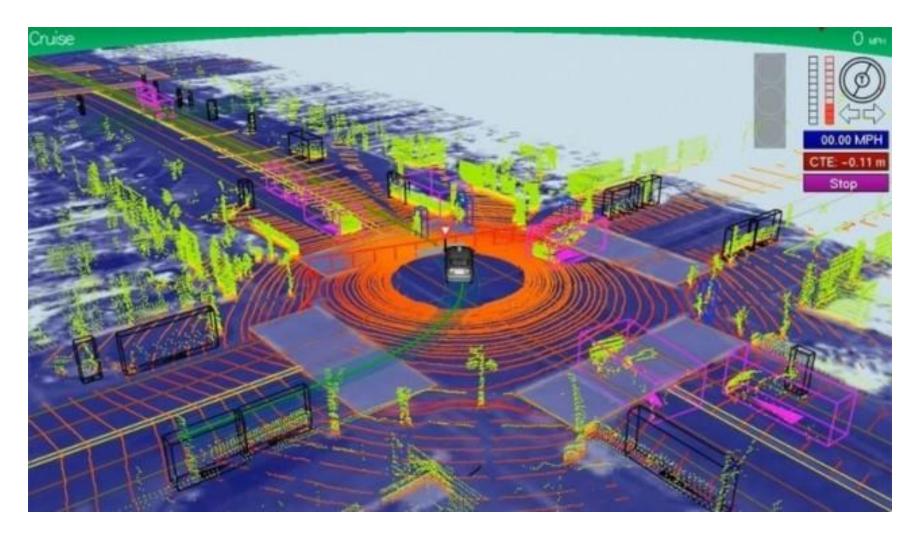
Mapping

Urban planning

Anthropology

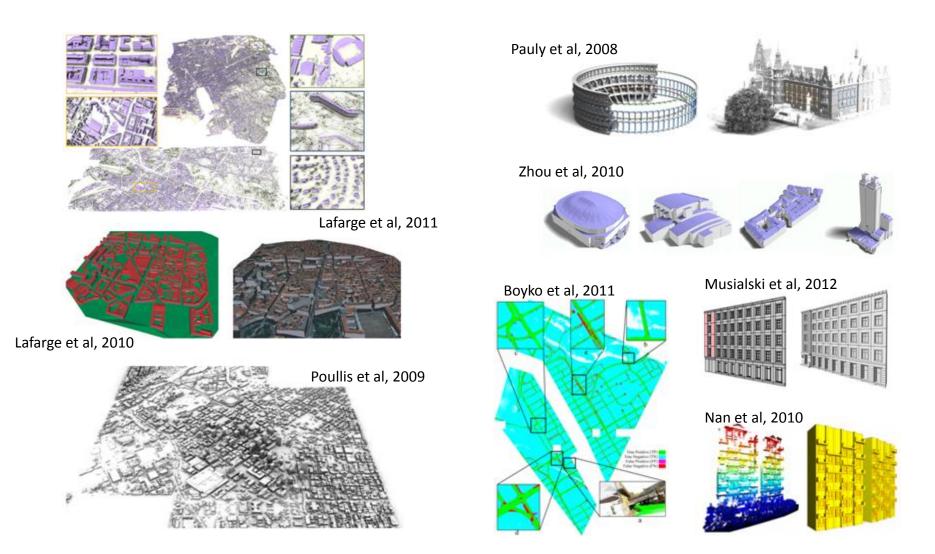
Driving Simulation

Applications



Semantic maps for self-driving cars

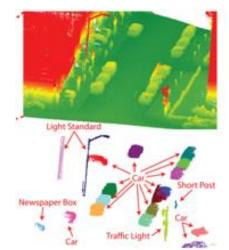
Large-scale structures (roads, buildings, etc.):



Roadside objects (cars, signs, lights, pedestrians, etc.)

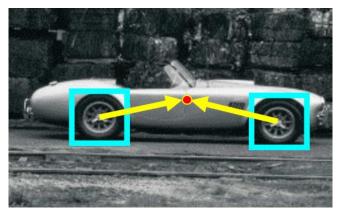
Velizhev et al, 2012

Linet et al, 2013



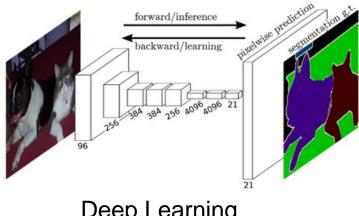
Patterson et al, 2008

Roadside objects (cars, signs, lights, pedestrians, etc.)



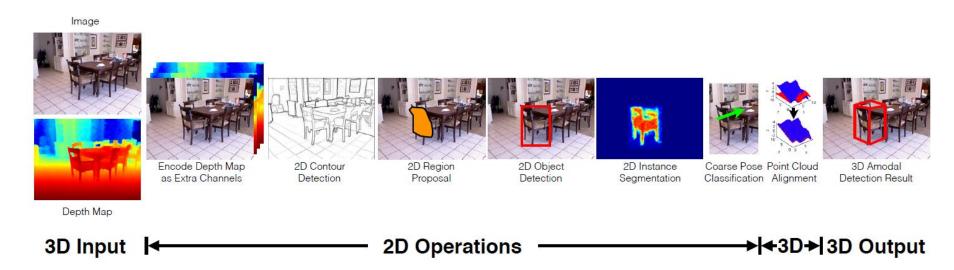
Conditional Random Field (e.g., Wojek et al., 2008)

Implicit Shape Model (e.g., Liebe et al., 2008)



Deep Learning (e.g., Long et al., 2015)

Indoor objects (chairs, tables, desks, etc.)



[CVPR13] Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images

- [IJCV14] Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and semantic segmentation
- [ECCV14] Object Detection and Segmentation using Semantically Rich Image and Depth Features
- [CVPR15] Aligning 3D Models to RGB-D Images of Cluttered Scenes
- [CVPR16] Cross Modal Distillation for Supervision Transfer

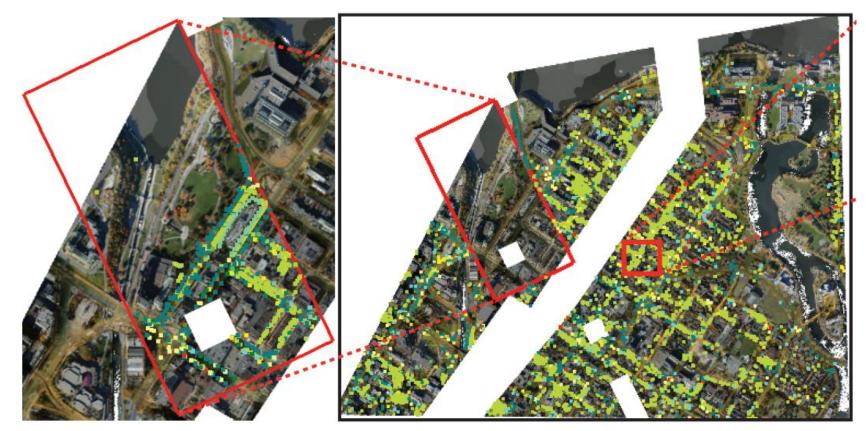
2D Deep Learning (e.g., Gupta et al., 2016)

Indoor objects (chairs, tables, desks, etc.)

	a state of the	SS					X	
	Algorithm	Input	ہ دی ا	₽	T		L T	mAP
3D Non-Deep Learning	Sliding Shapes	Depth	33.5	29	34.5	33.8	67.3	39.6
2D Deep Learning	Depth-RCNN (segment)	Depth	71	18.2	49.6	30.4	63.4	46.5
	Depth-RCNN (segment)	RGB-D	74.7	18.6	50.3	28.6	69.7	48.4
	Depth-RCNN (CAD fit)	Depth	72.7	47.5	54.6	40.6	72.7	57.6
	Depth-RCNN (CAD fit)	RGB-D	73.4	44.2	57.2	33.4	84.5	58.5
3D Deep Learning	Ours	Depth	83.0	58.8	68.6	49.5	79.2	67.8
	Ours	RGB-D	84.7	61.1	70.5	55.4	89.9	72.3

3D Deep Learning (e.g., Song et al., 2016)

Automatic supervised algorithms require training sets

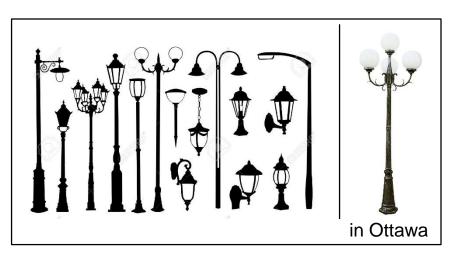


Training Area

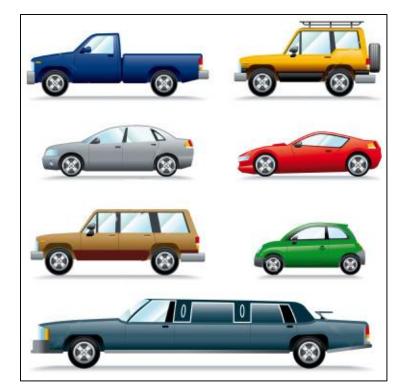
Test Area

Creating training sets requires manual annotation

"Automatic" supervised algorithms require training sets and fine-tuning for every test set



Different types of sidewalk lamps



Vehicle? Car? Honda? Accord?

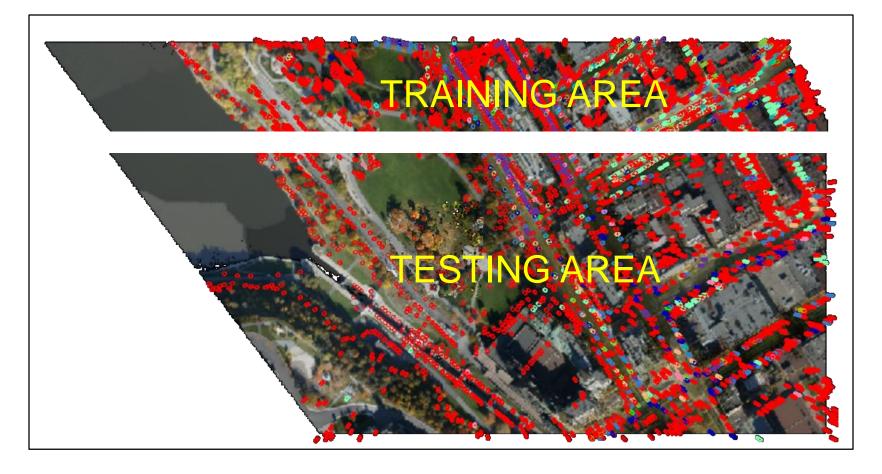
Creating fine-tuning training sets requires manual annotation

Manual Annotation is Necessary

What manual annotation method is best?

What Manual Annotation Method is Best?

Typical method: manually annotate training set, learn model, and apply model to test set



What Manual Annotation Method is Best?

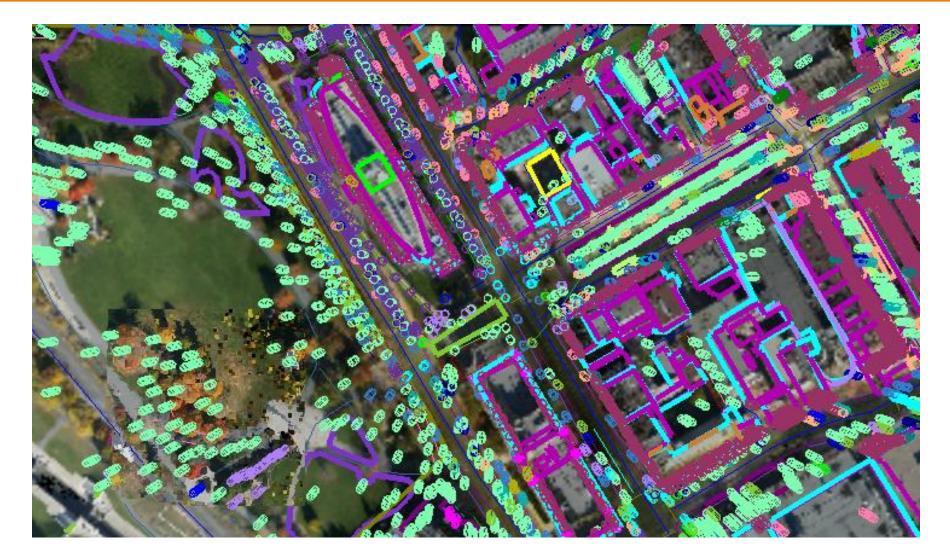
Typical method: manually annotate separate training set, learn model, apply model to test set, **and then fix errors**

		Location Segmentation			Recognition			
Class	# in Truth Area	Found (%)	Precision	Recall	# in Test Area	# Predicte	d Precision	n Recall
Short Post	338	328 (97)	92	99	116	131	79	91
Car	238	179 (75)	92	77	112	218	50	62
Lamp Post	146	146 (100)	89	98	98	132	70	86
Sign	96	96 (100)	83	100	60	71	58	65
Light Standard	58	57 (98)	91	92	37	51	45	62
Traffic Light	42	39 (93)	84	86	36	33	52	47
Newspaper Box	37	34 (92)	38	93	29	14	0	0
Tall Post	34	33 (97)	58	96	10	6	67	40
Fire Hydrant	20	17 (85)	88	100	14	10	30	21
Trash Can	19	18 (95)	60	100	15	14	57	40
Parking Meters	10	9 (90)	100	100	0	4	0	0
Traffic Control Box	7	7 (100)	80	100	5	0	0	0
Recycle Bins	7	7 (100)	92	100	3	1	Accur	a^{0} of
Advertising Cylinder	6	6 (100)	96	100	3	0	Acgui	
Mailing Box	3	3 (100)	98	100	1	mo	del's p	acy of redictions
"A" - frame	2	2 (100)	86	100	0	0		
All	1063	976 (92)	86	93	539	687	58	65

[Golovinskiy et al., ICCV 2009]

Fixing errors requires more manual annotation

What Manual Annotation Method is Best?

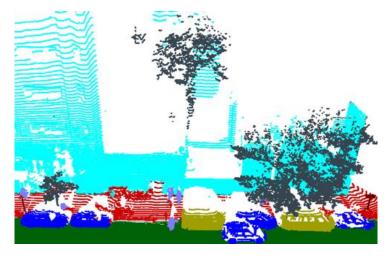


Given a new data set, how label everything perfectly?

Goal

Interactive system for manual labeling of small objects in LiDAR scans of urban environments

- Handle city-scale LIDAR datasets
- Achieve production-level accuracy (~100%)
- Require minimal user interaction



Instance-level Semantic Segmentation

LIDAR Data

Outline of Talk

Introduction

Experiences with different interactive labeling systems

- 1. One-by-one labeling
- 2. Interactive learning
- 3. Active learning
- 4. Group active learning

Summary and conclusion

Outline of Talk

Introduction

Experiences with different interactive labeling systems

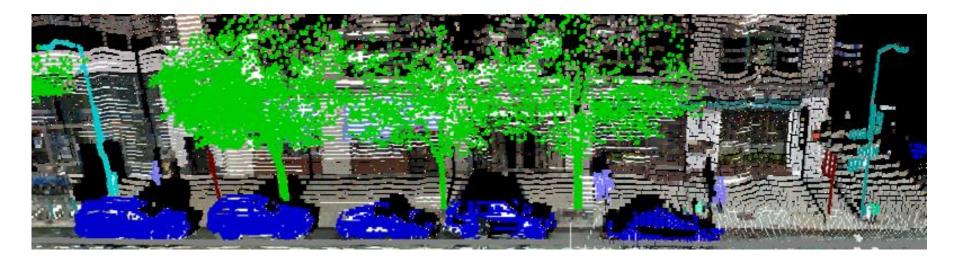
- 1. One-by-one labeling -
- 2. Interactive learning
- 3. Active learning
- 4. Group active learning

Summary and conclusion

One-by-One Labeling

Approach:

- 1. Computer provides initial segmentation
- 2. User finds objects, merges/splits segments, and assigns semantic labels with a keyboard key



[Dohan et al., 3DV 2015]

One-by-One Labeling

Data: Manhattan (R5 Google Street View)

- Push-broom LIDAR images from side-facing scanners
- 390M points
- 100 city blocks
- 3.5 km²
- 20 "runs"

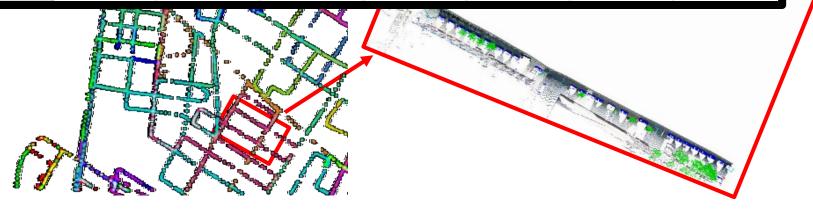
Demo

One-by-One Labeling Result

Result:

 Manually segmented and labeled 6,533 objects in around 20 hours

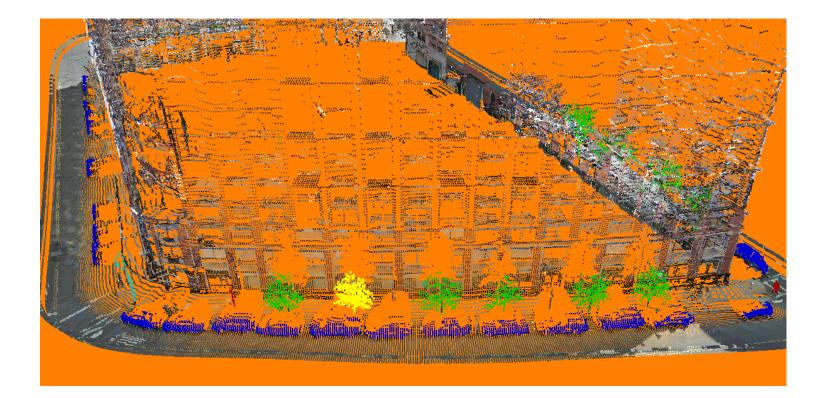
Run	Car	Van	Truck	Tree	Street Light	Traffic Light	Stop Sign
NYC 0	291	36	71	109	54	41	16
NYC 0, side 2	194	44	17	91	34	28	38
NYC 11	50	2	12	67	21	14	5
NYC 11, side 2	35	6	5	161	26	28	2
NYC 12	324	52	40	131	61	55	12
NYC 14	82	12	4	107	17	15	6



One-by-One Labeling Conclusion

One-by-one labeling of objects is possible, but tedious

• Domain-specific tools for visualization, camera control, etc. make a big difference on interactive labeling efficiency



Outline of Talk

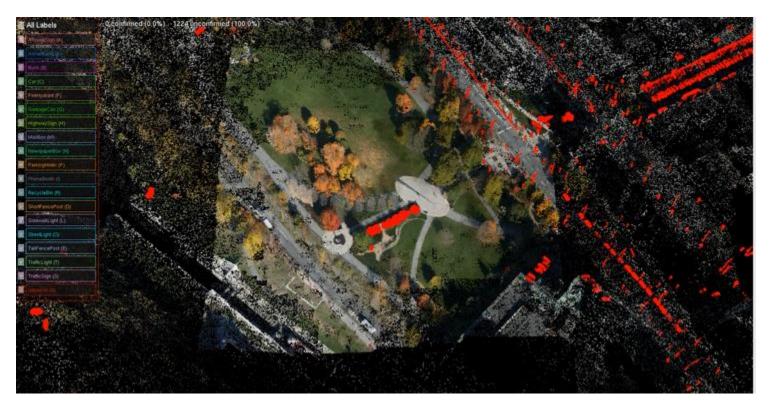
Introduction

Experiences with different interactive labeling systems

- 1. One-by-one labeling
- 2. Interactive learning -
- 3. Active learning
- 4. Group active learning

Summary and conclusion

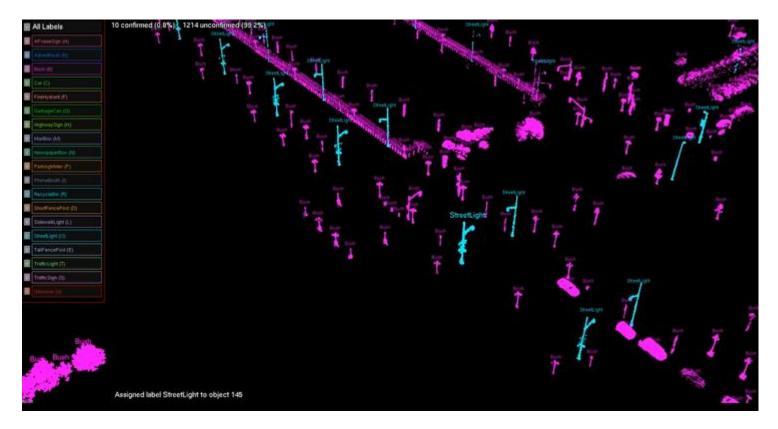
Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately



Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately

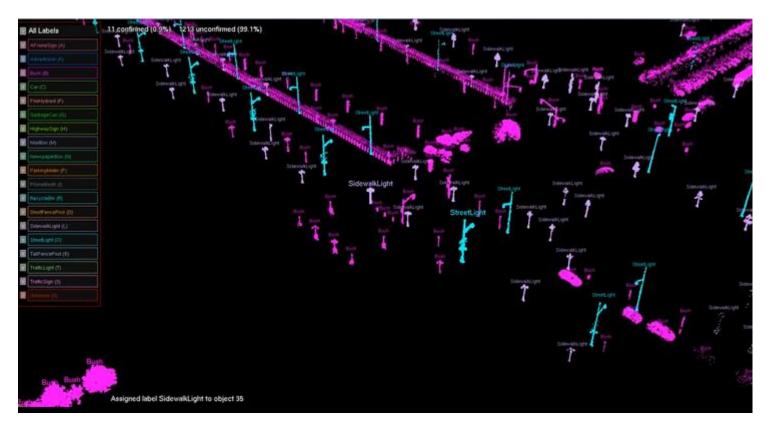
After 1 object label

Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately



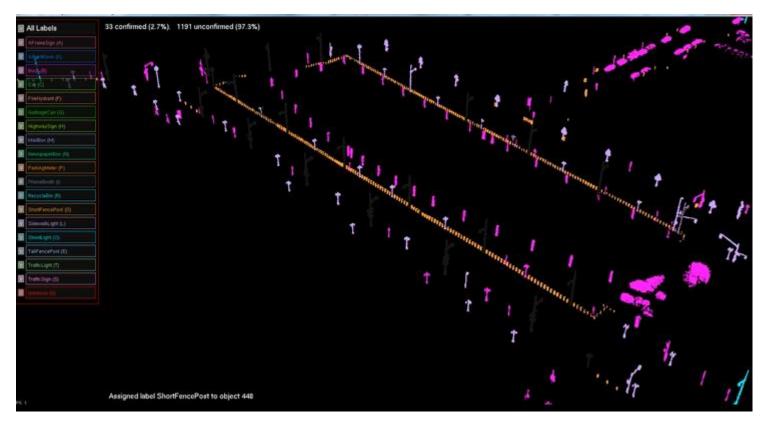
After 2 object label

Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately



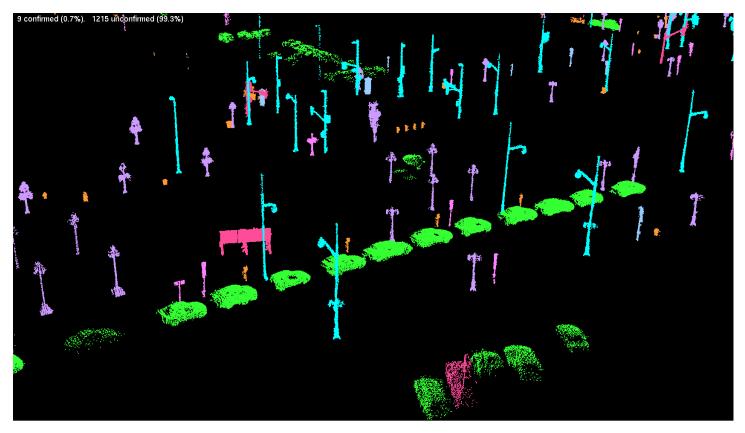
After 3 object labels

Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately



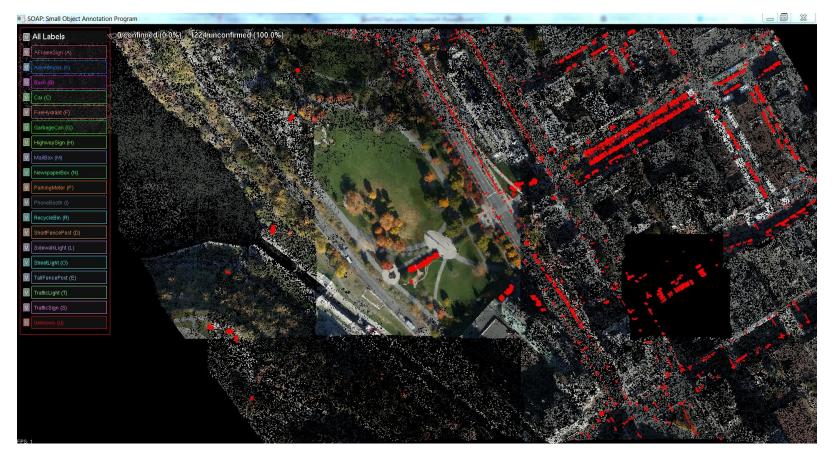
After 4 object labels

Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately

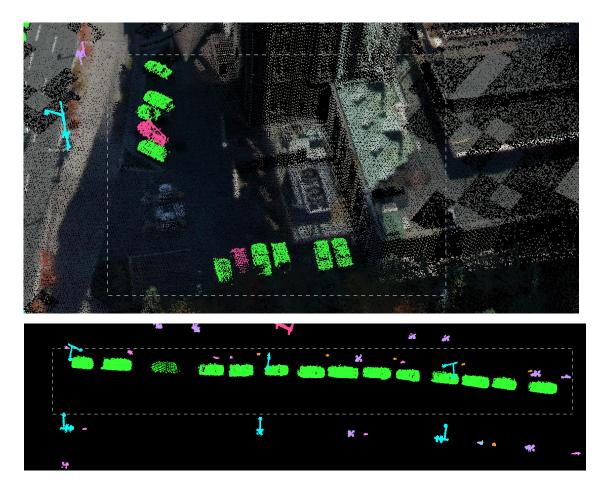


After 9 object labels

Approach: each time user labels an object, computer updates classifier and re-predicts labels for other objects immediately

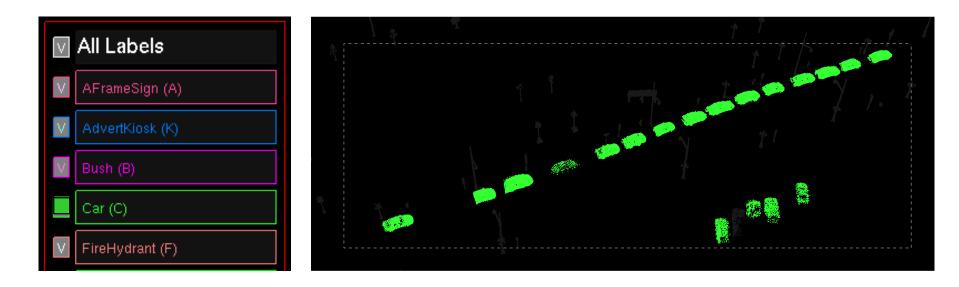


Key feature: "class-aware" group selection tools

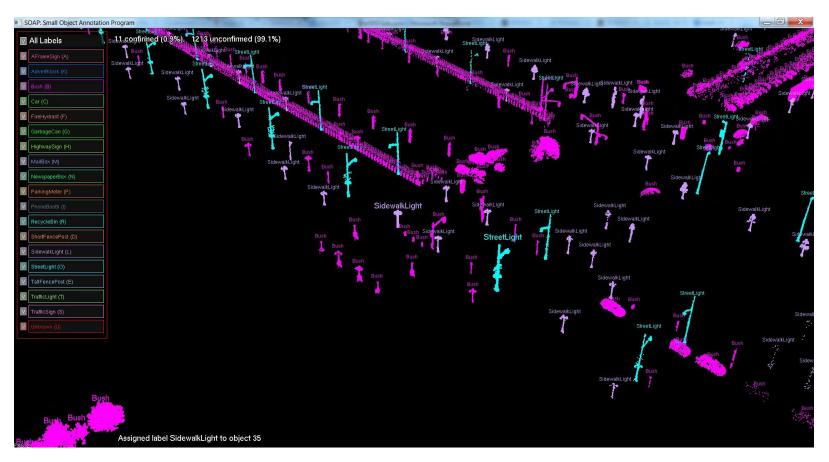


It is difficult to select groups of objects of the same class with typical bounding box selection tools

Key feature: "class-aware" group selection tools



Key feature: "class-aware" group selection tools

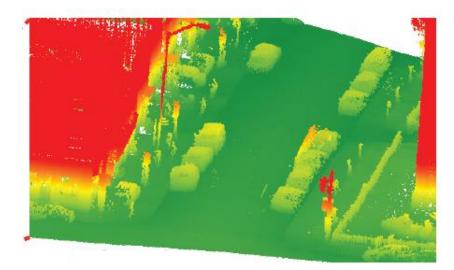


Interactive Learning Experiment

Interactive Learning Experiment

Data: Ottawa (Neptec)

- 1 aerial and 4 car-mounted LIDAR scanners
- Point cloud (no viewpoints)
- 6 km², 954M points



Interactive Learning Experiment

Ground truth:

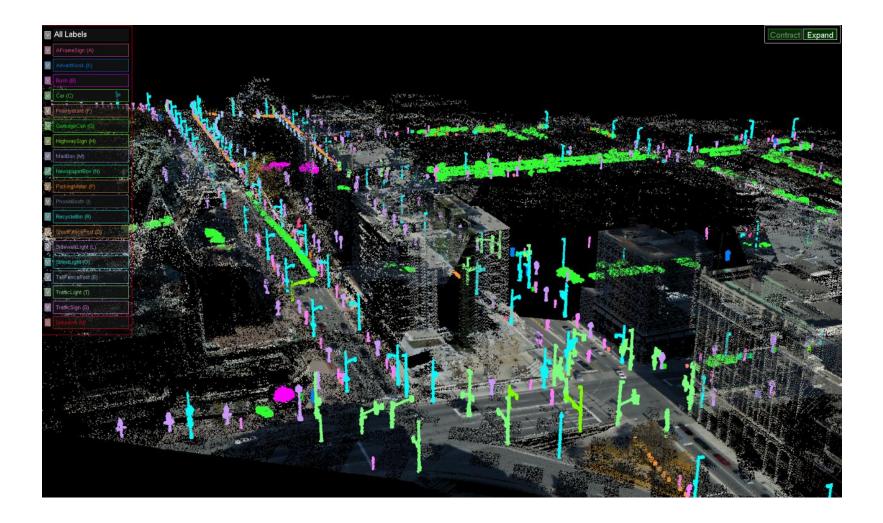
- 0.3 km², 100M points
- 1224 manually segmented and labeled objects in 18 classes

bush, fire hydrant, mailbox, newspaper box, parking meter, advertising kiosk, garbage can, recycle bin, phone booth, traffic sign, highway sign, A-frame sign, sidewalk light, street light, traffic light, short fence post, tall fence post, and car



Interactive Learning Experiment

Ground truth:

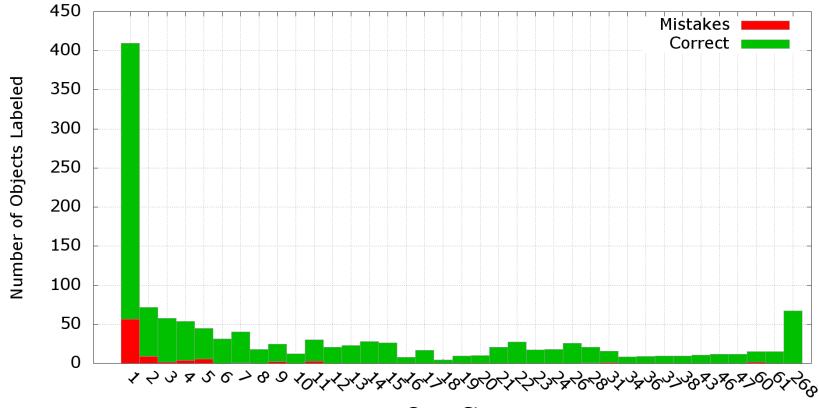


Interactive Learning Experiment

Protocol:

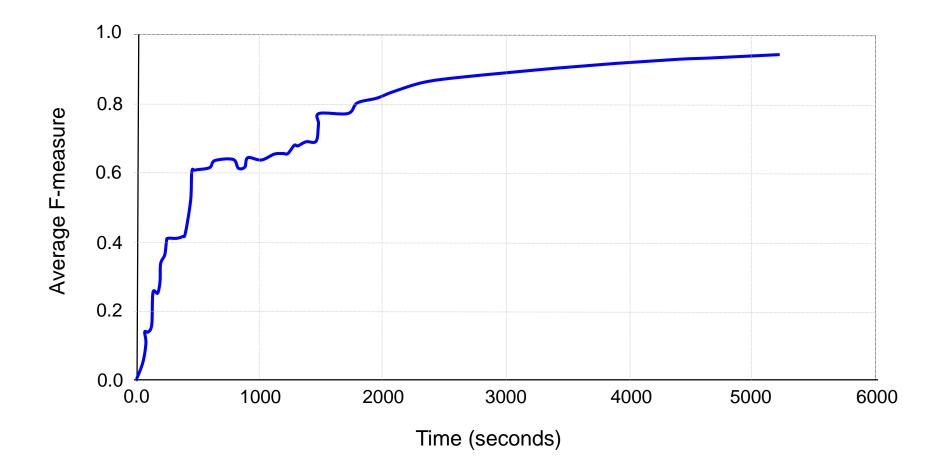
- Subjects: 4 students (no experience at all)
- Instructions: 5 minutes of instruction
- Training: 15 minutes of practice labeling 163 objects in a different area of city
- Task: "Provide/confirm label for every object with 100% accuracy as quickly as possible"

Subjects are able to select groups effectively ③

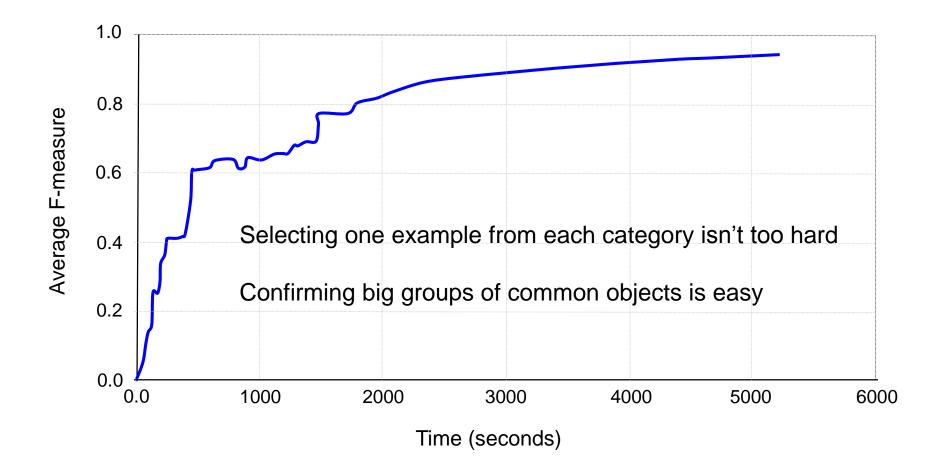


Group Size

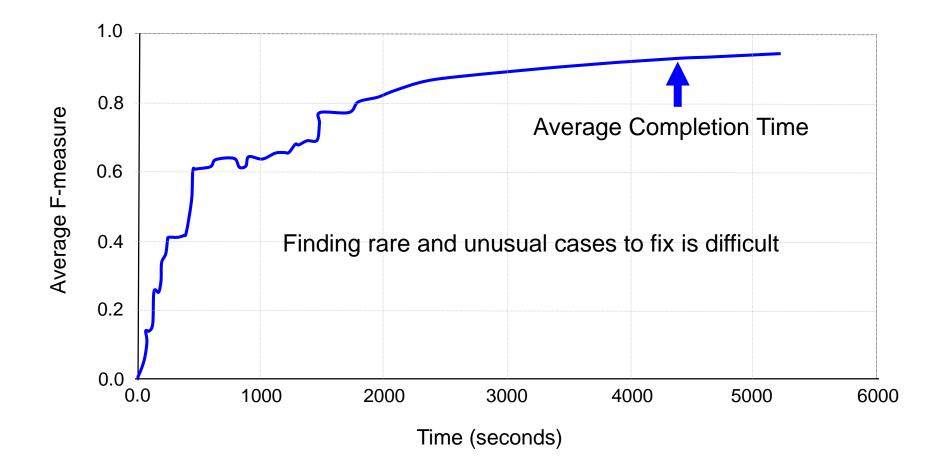
Subjects make super-linear progress ©



Subjects make rapid progress at the beginning S



Subjects make slow progress at end ⊗



Interactive Learning Conclusion

Interactive learning is still time-consuming

- Decisions on navigation and selection take time
- Finding objects to label/fix is particularly difficult at the end

Outline of Talk

Introduction

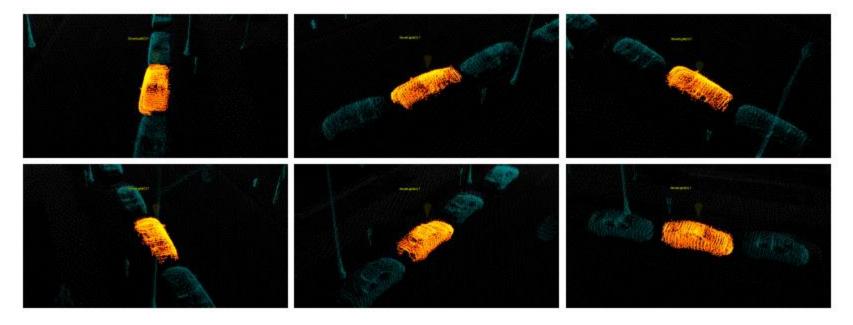
Experiences with different interactive labeling systems

- 1. One-by-one labeling
- 2. Interactive learning
- 3. Active learning -
- 4. Group active learning

Summary and conclusion

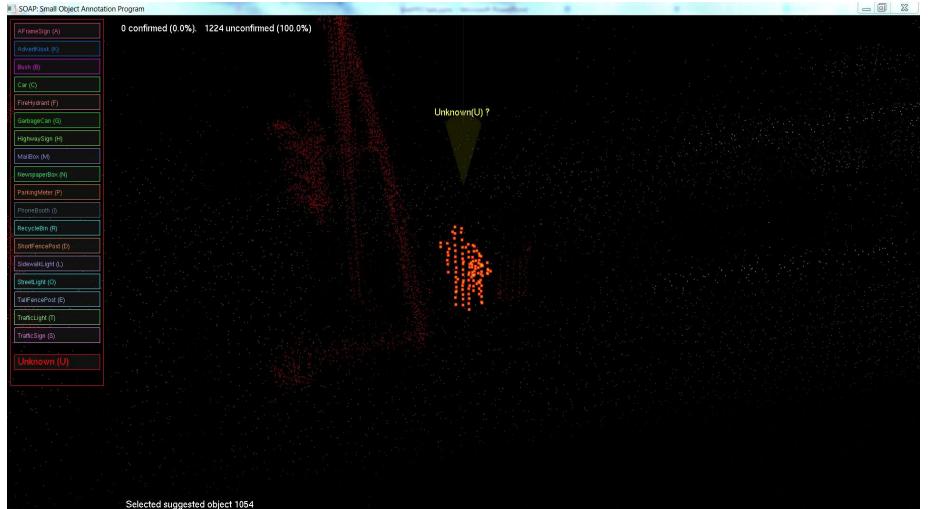
Active Learning

Approach: computer selects next object to label, controls camera and highlighting, and asks user only to provide label



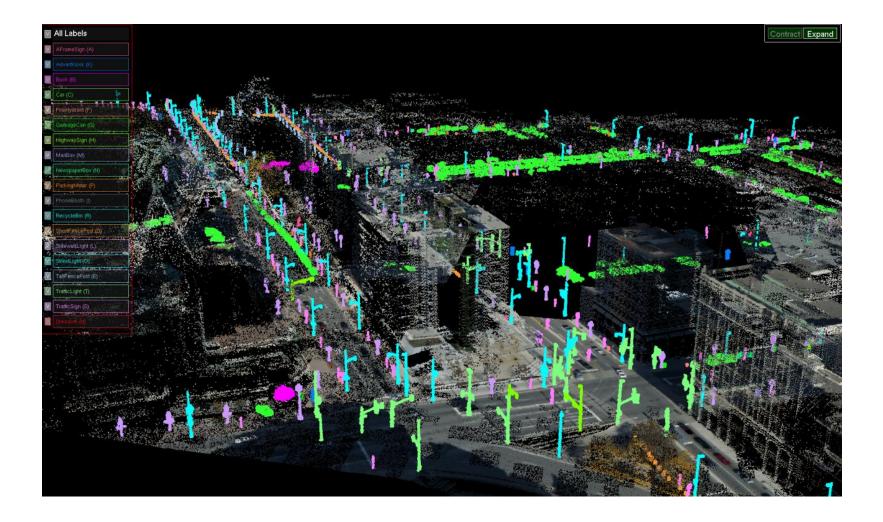
Rotating camera view around selected object to label

Active Learning



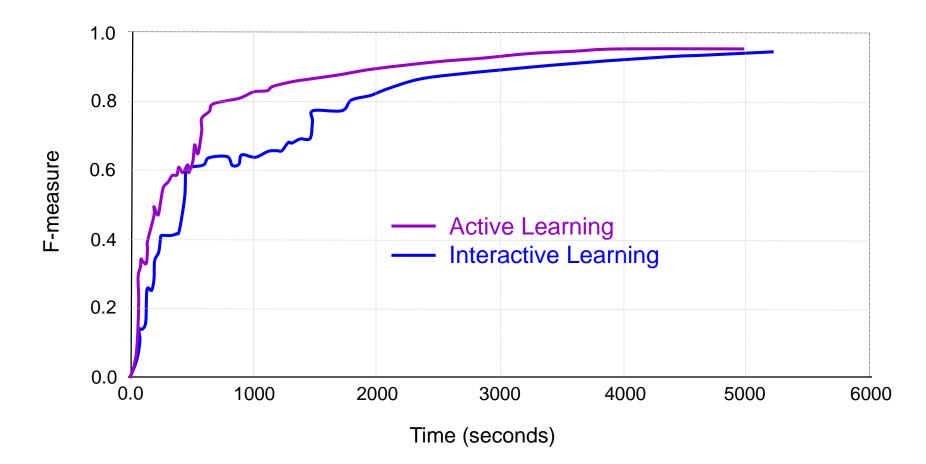
Active Learning Experiment

Same protocol as before ...



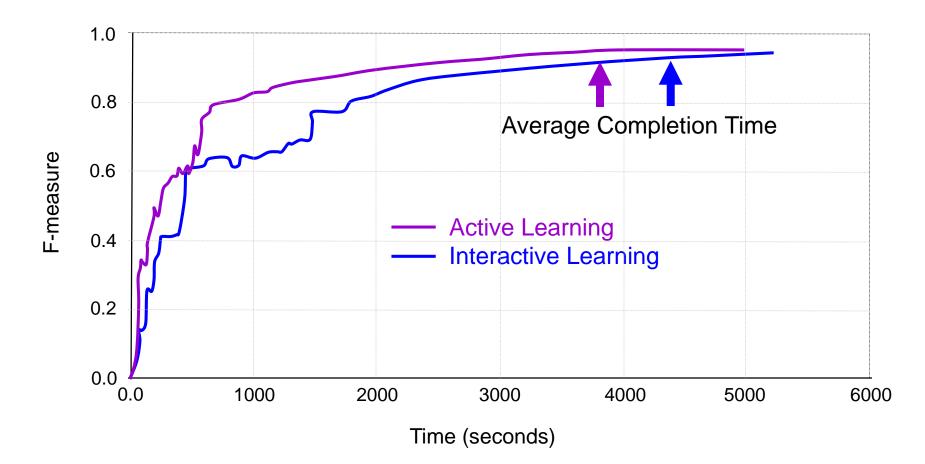
Active Learning Results

Subjects make faster progress with active learning ©



Active Learning Results

Overall time to complete task is still pretty slow 😕



Active Learning Conclusions

People provide labels more quickly

Don't have to worry about camera control or visualization parameters

However, progress is slow because each label is for only one object

• Have to label or confirm every object

Outline of Talk

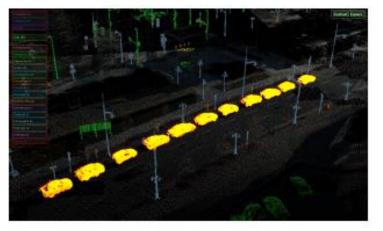
Introduction

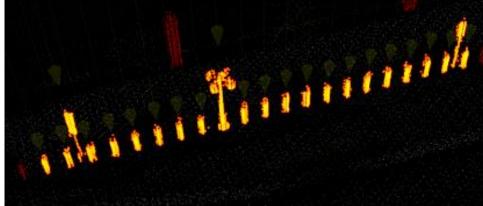
Experiences with different interactive labeling systems

- 1. One-by-one labeling
- 2. Interactive learning
- 3. Active learning
- 4. Group active learning -

Summary and conclusion

Approach: computer selects group of objects to label, controls camera and highlighting, and asks user to provide label or contract group

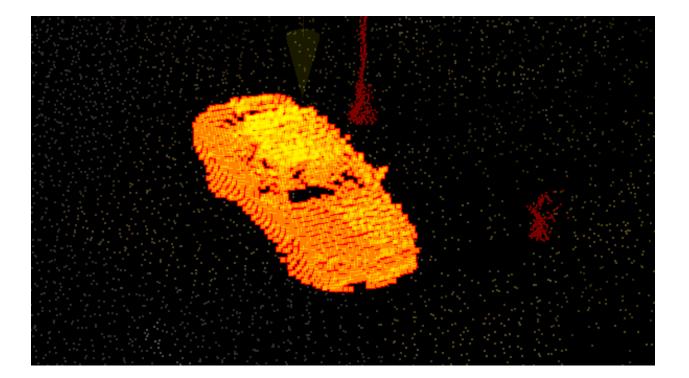




"Please contract group"

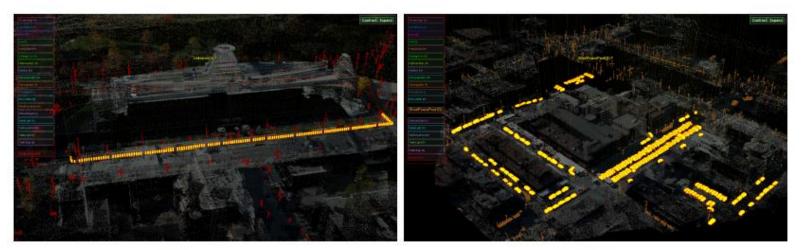
"Car"

How fast can you recognize/label this object?



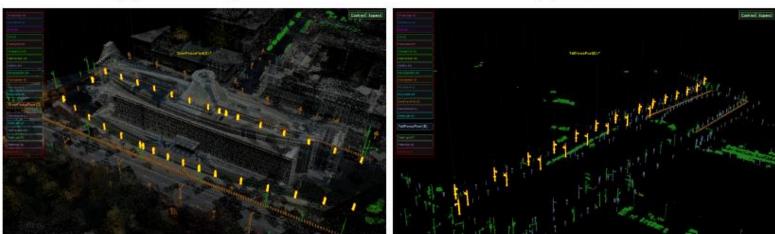
How about these?

People are fast at recognizing groups of objects



(a) 149 short posts

(b) 210 cars



(c) 33 tall fence posts

(d) 23 street lights

Studies from perceptual psychology show ...

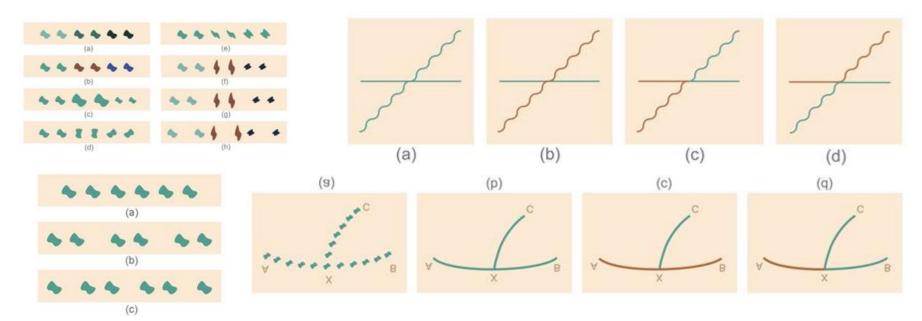
People grasp gyst of images in 100ms [Rensink et al. 2000, Sanocki et al. 1997]

- Can answer specific questions about gyst [Delorme et al. 2002, Thorpe et al. 1996]
- Even when distracted [Li et al. 2002]

People understand images of groups with regular patterns of similar items [Koffka 1922]

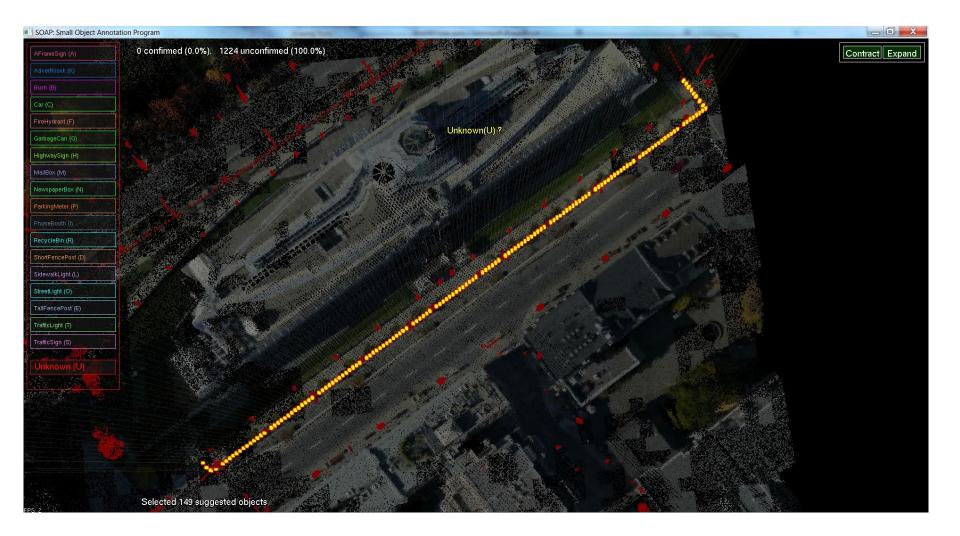
- Maintain only summary representations about groups [Ariely 2001]
- Do it rapidly and robustly [Chong et al. 2003, Chong et al. 2005, Haberman 2010]

Gestault rules for visual grouping suggest which patterns enable rapid recognition of shapes



["Laws of Seeing". Metzger, 1936] http://www.scholarpedia.org/article/Gestalt_principles

Group Active Learning Interface



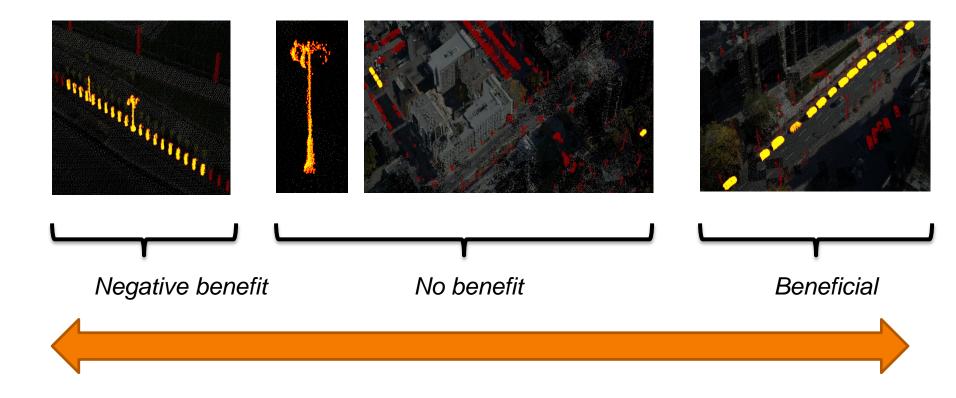
Challenges: choosing good groups to show user

- 1. Model the benefit of showing a group
- 2. Provide real-time algorithm to construct next group

Challenges: choosing good groups to show user

- 1. Model the benefit of showing a group
- 2. Provide real-time algorithm to construct next group

Benefit of a group: expected time savings if group is shown to user (compared to 1-by-1 labeling)

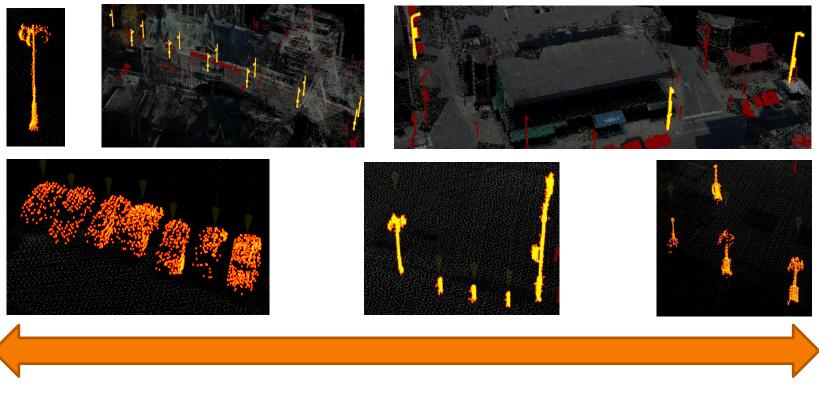


Benefit of a group:

$$Benefit = p_{Label} \cdot T_{1-by-1} - T_{group}$$

Benefit of a group:

$$Benefit = p_{Label} \cdot T_{1-by-1} - T_{group}$$



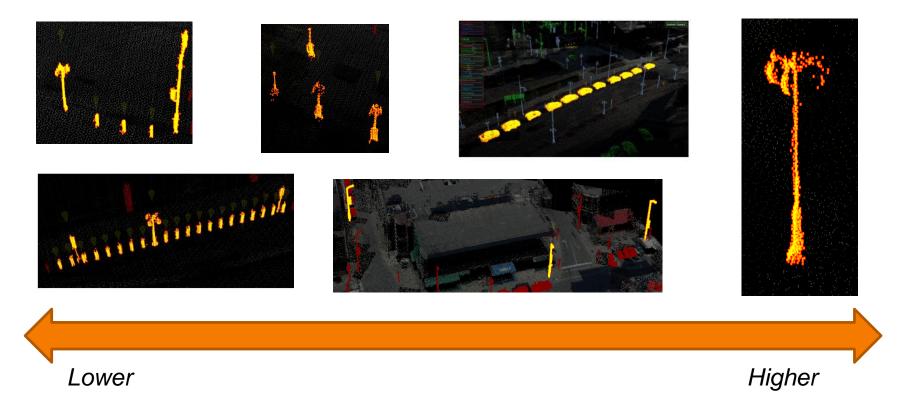
Lower

Time to recognize and label group

Higher

Benefit of a group:

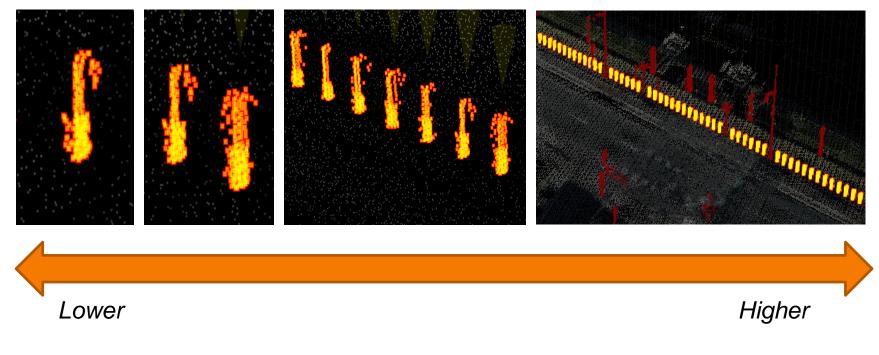
Benefit =
$$p_{Label}$$
 $T_{1-by-1} - T_{group}$



Probability of user providing label for group

Benefit of a group:

Benefit =
$$p_{Label} T_{1-by-1} - T_{group}$$



Time to recognize and label objects 1-by-1

Time to recognize and label objects in group 1-by-1:

$$Benefit = p_{Label} T_{1-by-1} - T_{group}$$
$$T_{1-by-1} = (T_{id} + T_{label}) \cdot |group|$$

Time to recognize and label group of objects:

$$Benefit = p_{Label} \cdot T_{1-by-1} - T_{group}$$
$$T_{1-by-1} = (T_{id} + T_{label}) \cdot |group|$$
$$T_{group} = T_{id} + \sum T_{ver} + T_{label}$$

Model recognition and label selection with Hick's Law:

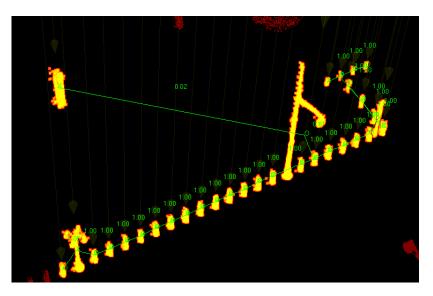
$$Benefit = p_{Label} \cdot T_{1-by-1} - T_{group}$$
$$T_{1-by-1} = (T_{id} + T_{label}) \cdot |group|$$
$$T_{group} = T_{id} + \sum T_{ver} + T_{label}$$
$$T_{id} \approx a_{id} \log_2(n+1)$$
$$T_{label} \approx a_{label} \log_2(n+1)$$

Hick's Law:

$$T_{CRT} = aH = a\sum_{i}^{n} p_i \log_2\left(\frac{1}{p_i} + 1\right)$$

Model group verification time based on similarity of adjacent objects:

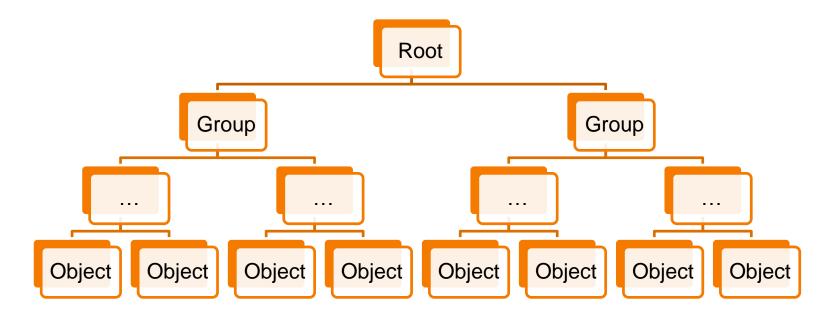
 $Benefit = p_{Label} \cdot T_{1-by-1} - T_{group}$ $T_{1-by-1} = (T_{id} + T_{label}) \cdot |group|$ $T_{group} = T_{id} + \sum T_{ver} + T_{label}$



Challenges: choosing good groups to show user

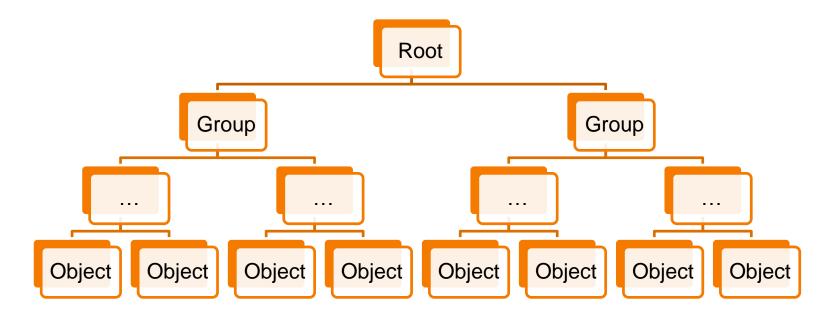
- 1. Model the benefit of showing a group
- 2. Provide real-time algorithm to construct next group

Hierarchical clustering algorithm to construct candidate groups



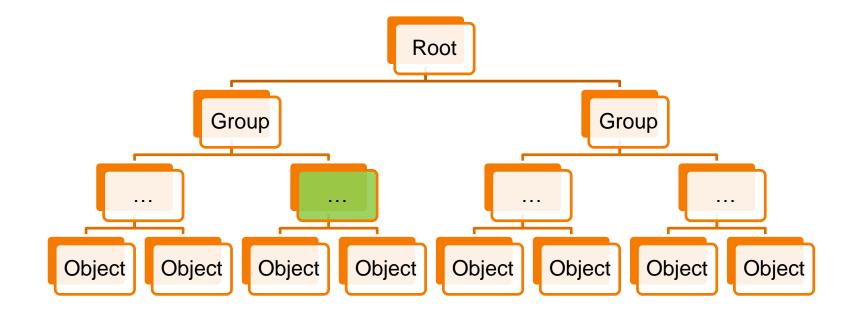
Group Active Learning

Hierarchical clustering algorithm to construct candidate groups



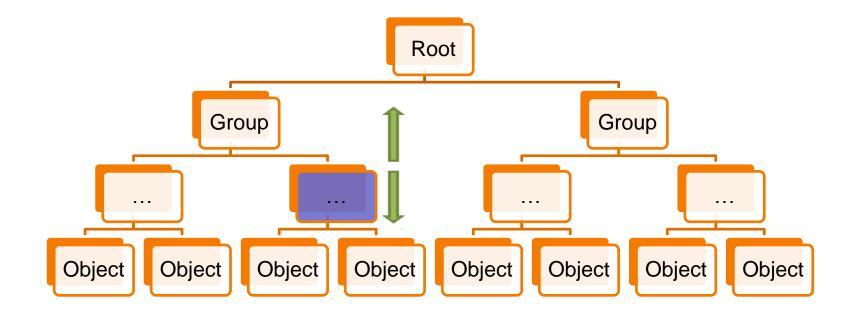
Group Active Learning

Select the most beneficial group to show user ...



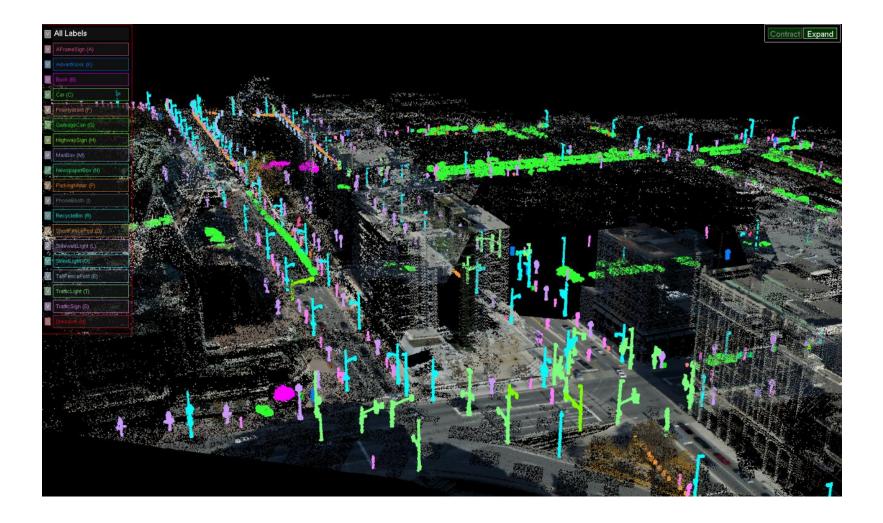
Group Active Learning

Contract (or expand) group if user requests

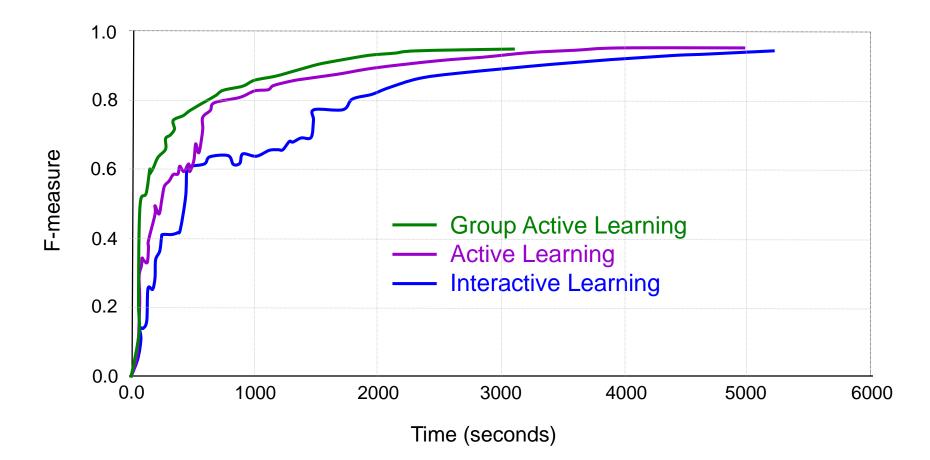


Group Active Learning Experiment

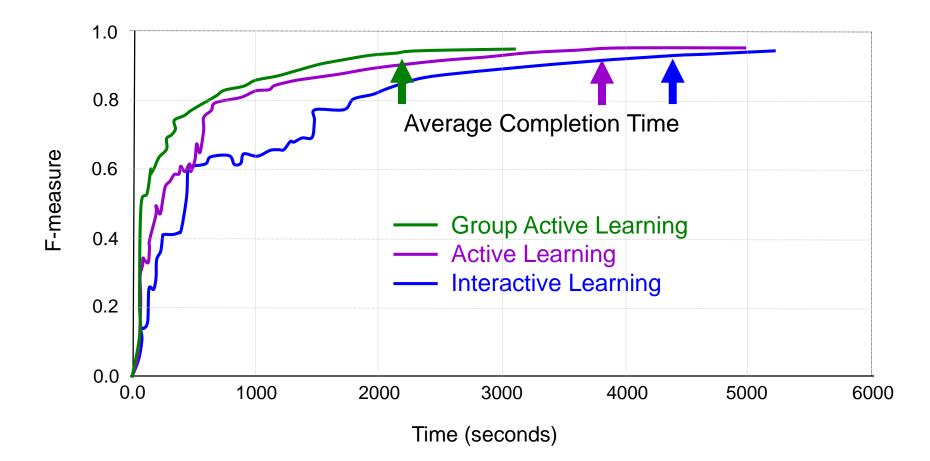
Same protocol as before ...



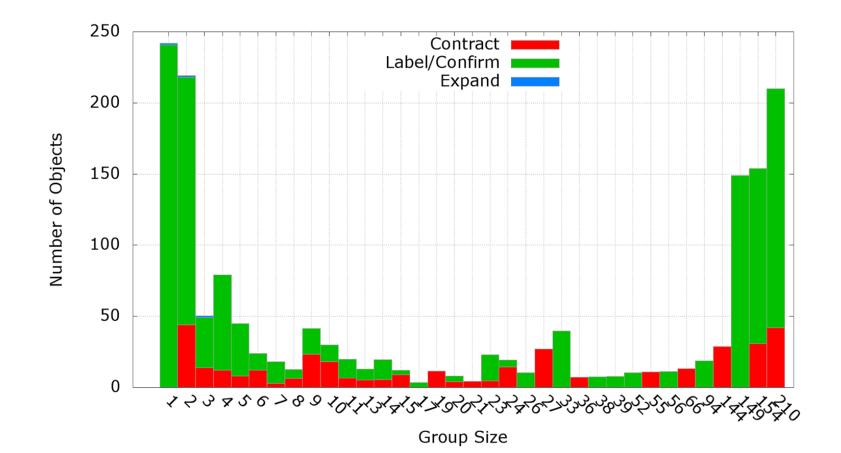
Group active learning required less time ③



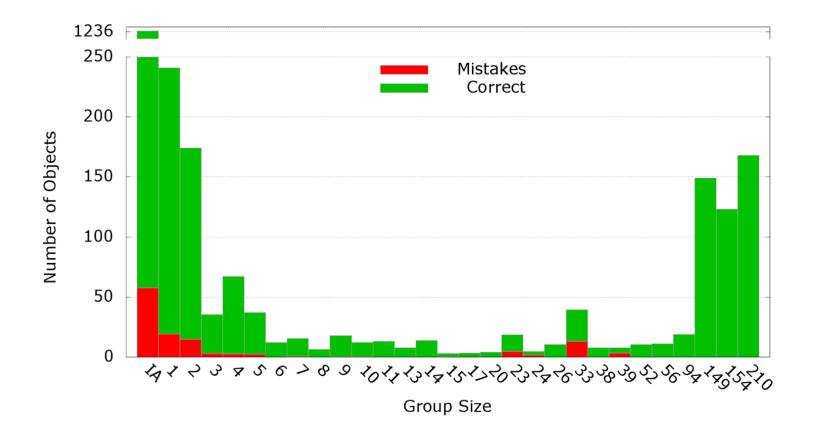
Group active learning required less time ③



Subjects label large groups created by our algorithm ©



Labeling by group does not increase mistakes ©



Comparison of Results

	Completion (seconds)	Final F-measure (%)
Interactive Learning	4401 +/- 787	94 +/- 1
Active Learning	3855 +/- 837	96 +/- 1
Group Active Learning	2281 +/- 561	95 +/- 3

Summary

Motivation:

 Almost every real application of semantic labeling requires manual annotation (to achieve production quality)

Research question?

• How to design labeling interfaces that help users achieve 100% accuracy in the least amount of time?

Some ideas from this work:

- Use omain-specific interfaces to accelerate labeling
- Interleave training and prediction during interactive process
- Utilize predicted object classes to filter interactive selections
- Automate camera control and search for objects
- Leverage Gestault principles to label groups of objects

Future Work

Joint localization/segmentation/labeling:

• What is the best interactive interface for simulatenous localization, segmentation, and labeling of objects?

Computational steering:

• Can interactive techniques guide training of deep networks (user-in-the-loop training)?

Other media:

• Can group active learning accelerate labeling of images, sounds, or other media not natively embedded in 3D?

Acknowledgments

Princeton students:

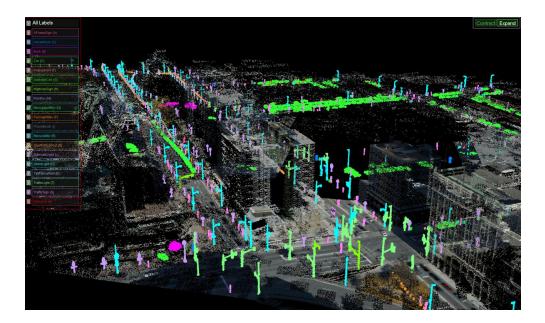
• Aleksey Boyko, Aleksey Golovinskiy

Data:

• Neptec, Google

Funding:

• Intel, NSF, Google



Thank You!