Point Set Alignment

Thomas Funkhouser
COS 526, Fall 2016
Motivation

Point sets to be aligned

- Range scans
 - Image features
 - Molecules
 - etc.
Motivation

Point sets to be aligned

- Range scans
- Image features
- Molecules
- etc.

![Diagram showing protein, ligand, and binding site atoms colored by residue group.]

Binding Site Atoms (colored by residue group)

Protein

Ligand

1hld
Motivation

Point sets to be aligned

- Range scans
 - Image features
- Molecules
- etc.
Goal

Given two partially overlapping point sets, compute the transformation that merges the two.
General Approach

1. Find feature points

Partially Overlapping Scans
General Approach

1. Find feature points
2. Establish correspondences

Partially Overlapping Scans
General Approach

1. Find feature points
2. Establish correspondences
3. Compute the aligning transformation

Partially Overlapping Scans

Aligned Scans
Problem

Most problems require aligning a subset of features
Problem

Most problems require aligning a subset of features

- Find the maximal subsets of points that align with error E
- Find the minimum misalignment for any subset of a size S
Observation I

Calculating the aligning transformation is usually easy if correspondences are known (proposed)

\[\text{RMSD}(A, B) = \sqrt{\sum_{i=1}^{N} (A_i - B_i)^2} \]
Observation II

Calculating the correspondences is usually easy if the aligning transformation is known (proposed)
The challenge is to discover the correspondences and aligning transformation together.
Outline

Introduction

Point set matching

- Brute force search
 - RANSAC
 - Geometric hashing
 - Association graphs
 - Generalized Hough transform
 - Iterative closest point

Methods used for RGB-D scanning

Discussion
Brute Force Search

Simple method:
- Try all possible sets of point correspondences
- Score the alignment for each one

Problem:
- $O(n^m)$ possible sets of m correspondences among n points
Brute Force Search

Simple method:

- Try all possible sets of point correspondences
- Score the alignment for each one

Problem:

- $O(n^m)$ possible sets of m correspondences among n points

A

B

8 Point aligned
RMSD = 3.1
Brute Force Search

Simple method:

- Try all possible sets of point correspondences
- Score the alignment for each one (e.g., RMSD)

Problem:

- \(O(n^m)\) possible sets of \(m\) correspondences among \(n\) points

All points aligned

RMSD = 0.2
Outline

Introduction

Point set matching
 • Brute force search
 ➢ RANSAC
 • Geometric hashing
 • Association graphs
 • Generalized Hough transform
 • Iterative closest point

Methods used for RGB-D scanning

Discussion
RANSAC

Randomly sample set of possible correspondences

- Randomly generate a small set of point correspondences
- Compute the aligning transformation for correspondences
 Score how well other points align after that transformation
- Remember the best transformation
RANSAC loop:

1. Select k matches (at random)
2. Compute transformation T aligning those matches
3. Find inlier matches where $d(p_i', Tp_i) < \varepsilon$
4. Re-compute T to align on all of its inliers
5. Re-find inlier matches where $d(p_i', Tp_i) < \varepsilon$
6. $T^* = T$ if has T largest set of inliers seen so far

Warp image by T^*

Composite images
RANSAC for Image Mosaics

RANSAC loop:
1. Select four matches (at random)
2. Compute homography \(H \) aligning those matches
3. Find inlier matches where \(d(p_i', Hp_i) < \varepsilon \)
4. Re-compute \(H \) to align on all of its inliers (least squares)
5. Re-find inlier matches where \(d(p_i', Hp_i) < \varepsilon \)
6. \(H^* = H \) if has \(H \) largest set of inliers seen so far

Warp image by \(H^* \) and composite images

Source: L. Lazebnik
RANSAC loop:

1. Select four matches (at random)
2. Compute homography H aligning those matches
3. Find inlier matches where $d(p'_i, Hp'_i) < \varepsilon$
4. Re-compute H to align on all of its inliers (least squares)
5. Re-find inlier matches where $d(p'_i, Hp'_i) < \varepsilon$
6. $H^* = H$ if has H largest set of inliers seen so far

Warp image by H^* and composite images

Source: L. Lazebnik
RANSAC loop:

1. Select four matches (at random)
2. Compute homography H aligning those matches
3. Find *inlier matches* where $d(p_i', Hp_i) < \varepsilon$
4. Re-compute H to align on all of its inliers (least squares)
5. Re-find *inlier matches* where $d(p_i', Hp_i) < \varepsilon$
6. $H^* = H$ if has H largest set of inliers seen so far

Warp image by H^* and composite images

Source: L. Lazebnik
RANSAC for Image Mosaics

RANSAC loop:

1. Select four matches (at random)
2. Compute homography H aligning those matches
3. Find inlier matches where $d(p_i', Hp_i) < \varepsilon$
4. Re-compute H to align on all of its inliers (least squares)
5. Re-find inlier matches where $d(p_i', Hp_i) < \varepsilon$
6. $H^* = H$ if has H largest set of inliers seen so far

Warp image by H^* and composite images

Source: L. Lazebnik
RANSAC for Image Mosaics

RANSAC loop:
1. Select four matches (at random)
2. Compute homography H aligning those matches
3. Find inlier matches where $d(p_i', Hp_i) < \varepsilon$
4. Re-compute H to align on all of its inliers (least squares)
5. Re-find inlier matches where $d(p_i', Hp_i) < \varepsilon$
6. $H^* = H$ if has H largest set of inliers seen so far

Warp image by H^* and composite images

Source: L. Lazebnik
Outline

Introduction

Point set matching
 • Brute force search
 • RANSAC
 ➢ Geometric hashing
 • Association graphs
 • Generalized Hough transform
 • Iterative closest point

Methods used for RGB-D scanning

Discussion
Geometric Hashing

Discretize transformations and scoring

Point Set A

Point Set B

[Wolfson97]
Geometric Hashing

Discretize transformations and scoring

Point Set A

Point Set B

Rotation & Translation for (4,1)

[Wolfson97]
Geometric Hashing

Discretize transformations and scoring

Point Set A

Point Set B

Rotation & Translation for (i, j)

[Wolfson97]
Geometric Hashing

Discretize transformations and scoring

Point Set A

Point Set B

Rotation & Translation for (4,1)

Rotation & Translation for (i, j)
Geometric Hashing

Discretize transformations and scoring

Point Set A

Point Set B

Rotation & Translation for (4,1)

Rotation & Translation for (i, j)

Score correspondences

[Wolfson97]
Geometric Hashing

Preprocessing

Point Set in Database

Rotation & translation for all pairs of points in all point sets

Store (point set, ref. frame, properties, point) for every transformed point in hash table

Hash Table

[Wolfson97]
Geometric Hashing

Query processing

Point Set Query

Rotation & translation for one pair of points

[Wolfson97]
Geometric Hashing

Preprocessing complexity
- $O(n^4)$ for n points per binding site
 - $O(n^3)$ possible triples * $O(n)$ transformations per triple

Query complexity
- $O(m) \times \text{binsize}$ for m points in query binding site
 - 1 triple * $O(m)$ transformations per triple * binsize hash processing per transformation

[Wolfson97]
Outline

Introduction

Point set matching
 • Brute force search
 • RANSAC
 • Geometric hashing
 ➢ Association graphs
 • Generalized Hough transform
 • Iterative closest point

Methods used for RGB-D scanning

Discussion
Association Graphs

G1

G2

[Schmitt02, Brown82]
Association Graphs

Represent both points sets as complete graphs (G1 and G2). (edges connect all pairs of vertices within each point set)

[Schmitt02, Brown82]
Create vertices in the association graph for all compatible pairs of vertices in the original graphs. This can lead to a large number of vertices.

[Schmitt02, Brown82]
Association Graphs

Create vertices in the association graph for all compatible pairs of vertices in the original graphs. Compatibility could refer to chemical properties.

[Schmitt02, Brown82]
Create edges between (uv) and (wx) if the edges between (u) and (w) as well as between (v) and (x) match.

[Schmitt02, Brown82]
Create edges between \((uv)\) and \((wx)\) if the edges between \((u)\) and \((w)\) as well as between \((v)\) and \((x)\) match.

For this example, edge length is the only consideration.

[Schmitt02, Brown82]
Create edges between \((uv)\) and \((wx)\) if the edges between \((u)\) and \((w)\) as well as between \((v)\) and \((x)\) match.

For this example, edge length is the only consideration.

[Schmitt02, Brown82]
Create edges between \((uv)\) and \((wx)\) if the edges between \((u)\) and \((w)\) as well as between \((v)\) and \((x)\) match.

For this example, edge length is the only consideration.

[Schmitt02, Brown82]
Finding correspondences: The largest set of corresponding nodes in the same configuration is the maximal clique in the association graph.
Association Graphs

Computational complexity:
- $O(2^n)$ for n points
- NP-complete
- Branch and bound algorithms

Find the Maximal Clique{
 return Cliques(empty, all nodes)
}

Cliques(X, Y){
 if (no node in Y-X is connected to all of X){
 return X;
 }else{
 y = node in Y connected to all of X;
 return Largest(Cliques(X union y, Y},
 Cliques{X, Y-y});
 }
}
Outline

Introduction

Point set matching
- Brute force search
- RANSAC
- Geometric hashing
- Association graphs
 ➢ Generalized Hough transform
- Iterative closest point

Methods used for RGB-D scanning

Discussion
Generalized Hough Transform

Vote for transformations

Point Set A

Point Set B

Hough Transformation Space
Generalized Hough Transform

Vote for transformations

Point Set A

Point Set B

Hough Transformation Space
Generalized Hough Transform

Vote for transformations

Point Set A

Point Set B

Hough Transformation Space
Generalized Hough Transform

Vote for transformations

Point Set A

Point Set B

Hough Transformation Space
Generalized Hough Transform

Vote for transformations

Point Set A

Point Set B

Hough Transformation Space
Generalized Hough Transform

Simple to implement

- Can use grid to represent transformation space

Expensive for high-dimensional transformations

- Storage and number of samples is exponential in dimensionality of transformation space
 - Translation (3D)
 - Rotation (3D)
 - Translation & rotation (6D)
 - Translation & rotation & scale (7D)
Outline

Introduction

Point set matching
 • Brute force
 • RANSAC
 • Geometric hashing
 • Association graphs
 • Generalized Hough transform
 ➢ Iterative closest points

Methods used for RGB-D scanning

Discussion
Iterative Closest Points

Given two point sets

A

B

[Besl92]
Iterative Closest Points

Given two point sets

[Besl92]
Iterative Closest Points

Given two point sets and an initial guess for the transformation that aligns them

[Besl92]
Iterative Closest Points

Assume closest points correspond

[Besl92]
Iterative Closest Points

Assume closest points correspond: A→B
Iterative Closest Points

Assume closest points correspond: $A \rightarrow B$ and $B \rightarrow A$

[Besl92]
Iterative Closest Points

Rejecting outliers

[Besl92]
Iterative Closest Points

Find the transformation that optimally aligns proposed correspondences (superposition)

\[
d(A, B) = \sum_{A_i \in A} \|A_i - B\|^2 + \sum_{B_i \in B} \|A_i - B\|^2
\]

[Besl92]
Iterative Closest Points

Iterate until convergence

1. Select source points (from one or both point sets)
2. Match to points in the other point set
3. Weight the correspondences
4. Reject outlier point pairs
5. Compute an error metric for the current transform
6. Minimize the error metric w.r.t. transformation

Computational complexity

- $O(k \times n \log n)$ for n points per binding site and k iterations
 - k iterations * $O(n)$ points * $O(\log n)$ to find closest point

Slide courtesy of Szymon Rusinkiewicz
Summary

Brute force
• Accurate, slow

RANSAC
• Approximate

Geometric hashing
• Fast query, after slow preprocessing
• Distance threshold implicit in hash bucket sizes

Association graphs
• Expensive for large point sets
• Distance threshold for “associations”

Generalized Hough transform
• Requires lots of space/samples for high dimensional transformations

Iterative closest points
• Fast, in practice
• Requires good initial guess