Image-Based Rendering

COS 526, Fall 2016 Thomas Funkhouser

Acknowledgments: Dan Aliaga, Marc Levoy, Szymon Rusinkiewicz

What is Image-Based Rendering?

 Definition 1: the use of photographic imagery to overcome the limitations of traditional computer graphics

What is Image-Based Rendering?

 Definition 2: The use of computational techniques to overcome limitations of traditional photography

Image-Based Modeling and Rendering

Traditional vision / graphics pipelines:

Image-based pipeline:

Image-Based Modeling and Rendering

Generate new views of a scene directly from existing views

Plenoptic Function

- $L(x,y,z,\theta,\phi,t,\lambda)$
- Captures all light flow in a scene
 - to/from any point (x,y,z),
 - in any direction (θ, ϕ) ,
 - at any time (t),
 - at any frequency (λ)
- Enough information to construct any image of the scene at any time

Plenoptic Function Simplifications

- Simplification from 7D to $3 \times 5D$
 - Represent color as RGB: eliminate λ
 - Static scenes: eliminate t

Other simplfications?

Image-Based Representations

7D Ideal **6D** Consider only 3 frequencies (RGB) 5D Consider only one time instant (static scene) Consider only viewpoints inside/outside scene **4D** Consider one dimension fewer directions/positions **3D** Consider viewpoints at finite set points or angles **2D**

IBR Representations

- Image pairs
- Sea of Images
- Lightfields / Lumigraphs

IBR Representations

Image pairs

- Sea of Images
- Lightfields / Lumigraphs

View Interpolation

- Create novel images by resampling photographs
 - Reference images sample 5D plenoptic function

View Interpolation

Method:

- Warp nearby reference images to novel viewpoint
- Blend warped images

Morph with warp defined by reprojection or pixel correspondences

Pixel Correspondences

- Vision (e.g. stereo): disparity
- Feature matching: sparse
- 3D model: possibly coarse

Left

Right

Disparity

View Interpolation

- Problem: changes in visibility
 - Disocclusions

- Partial solutions:
 - Fill holes by interpolating nearby pixels
 - Fill holes with texture synthesis

- Another solution (when possible):
 - Multiple samples per pixel at different depths

• Another solution (when possible):

- Multiple samples per pixel at different depths

Reference Image

Warped Depth Image

[Popescu]

- Another solution (when possible):
 - Multiple samples per pixel at different depths

Reference Image

Warped Layered Depth Image

View Interpolation Challenges

Capture

– How do we obtain a dense set of calibrated images over a large area in a practical manner?

Data Management

– How do we store and access the large amount of data?

Rendering

– How do we create novel views from a dense sampling of images in real-time?

IBR Representations

- Image pairs
- Sea of Images <
- Lightfields / Lumigraphs

Sea of Images

 Use a hemispherical FOV camera driven on cart

Paraboloidal Catadioptric Camera [Nayar97]

 Use a hemispherical FOV camera driven on cart

Locate camera by tracking fiducials

Result is a "sea of images" spaced a few inches apart

Sea of Images Compression

 Goal: provide access to images along arbitrary viewpoint paths in real-time

Sea of Images Compression

 Approach: create a multiresolution spatial hierarchy of compressed original images and compressed difference images

Sea of Images Rendering

 Use captured images near the novel viewpoint to create new views

Sea of Images Rendering

➤ Interpolate three nearest views using detected feature correspondences

- Bell Labs Museum
 - 900 square ft
 - 9832 images
 - 2.2 inch spacing
- Princeton Library
 - 120 square ft
 - 1947 images
 - 1.6 inches
- Personal Office
 - 30 square feet
 - 3475 images
 - 0.7 inches

- Times
 - − Setup: ~15 minutes
 - − Capture: ~30-60 minutes
 - Preprocessing time: 4 to 17 hours
- Frame rate
 - 1024x1024 @ 20Hz, 512x512 @ 30Hz

R

Render complex light effects (specular highlights)

cylindrical projection

 Multiresolution pre-filtering: far-to-near image sequence

Sea of Images Results

<u>captured</u> omnidirectional image

reconstructed omnidirectional image

IBR Representations

- Image pairs
- Sea of Images
- Lightfields / Lumigraphs

Lightfields

 In unoccluded space, can reduce plenoptic function to 4D

Using Lightfields

- Obtain 2D slices of 4D data set
- Arbitrary views: take other 2D slices
- Challenges:
 - Parameterization
 - Capture
 - Compression
 - Rendering

Lightfield Parameterization

Point / angle

Two points on a sphere

Points on two planes

Original images and camera positions

Light Field Two-Plane Parameterization

- Two planes, evenly sampled: "light slab"
- In general, planes in arbitrary orientations
- In practice, one plane = camera locations
 - Minimizes resampling

Light Field Two-Plane Parameterization

Light Field Coverage

Multi-Slab Light Fields

- Capture a 2D set of (2D) images
- Choices:
 - Camera motion: human vs. computer
 - Constraints on camera motion
 - Coverage and sampling uniformity
 - Aliasing

Lumigraph Capture

- Capture: move camera by hand
- Camera intrinsics assumed calibrated
- Camera pose recovered from markers

- Levoy 06:
 - Computer-controlled camera rig
 - Move camera to grid of locations on a plane

- Acquire an entire light field at once
- Video rates
- Integrated MPEG2 compression for each camera

(Bennett Wilburn, Michal Smulski, Mark Horowitz)

Lytro

Lightfield Compression

- Compress individual images (JPEG, etc.)
- Adapt video compression to 2D arrays
- Decomposition into basis functions
- Vector quantization

Lightfield Rendering

- How to select rays?
- How to interpolate

Lightfield Rendering

- For each desired ray:
 - Compute intersection with (u,v) and (s,t) planes
 - Take closest ray
- Variants: interpolation
 - Bilinear in (u,v) only
 - Bilinear in (s,t) only
 - Quadrilinear in (u,v,s,t)

Lumigraph Rendering

 Use rough depth information to improve rendering quality

Lumigraph Rendering

 Use rough depth information to improve rendering quality

Lumigraph Rendering

Without using geometry

Using approximate geometry

Lightfields

Advantages:

- Simpler computation vs. traditional CG
- Cost independent of scene complexity
- Cost independent of material properties and other optical effects
- Avoid hard vision problems

Disadvantages:

- Static geometry
- Fixed lighting
- High storage cost

Other IBR Representations

- Texture maps
- VDTMs
- Surface lightfields
- Unstructured lightfields
- Concentric mosaics
- Panorama
- Etc.

IBR Summary

Advantages

- Photorealistic by definition
- Do not have to create 3D detailed model
- Do not have to do lighting simulation
- Performance independent of scene

Disadvantages

- Static scenes only
- Real-world scenes only
- Difficult for scenes with specularities, etc.
- Limited range of viewpoints
- Limited resolution