Image-Based Rendering

COS 526, Fall 2016

Thomas Funkhouser

Acknowledgments: Dan Aliaga, Marc Levoy, Szymon Rusinkiewicz
What is Image-Based Rendering?

• Definition 1: the use of photographic imagery to overcome the limitations of traditional computer graphics
What is Image-Based Rendering?

• Definition 2: The use of computational techniques to overcome limitations of traditional photography
Image-Based Modeling and Rendering

• Traditional vision / graphics pipelines:

- World
- Geometry
- Reflectance
- Light sources
- New Images

• Image-based pipeline:

- World
- Captured Images
- New Images
Image-Based Modeling and Rendering

• Generate new views of a scene directly from existing views
Plenoptic Function

- $L(x,y,z,\theta,\phi,t,\lambda)$
- Captures all light flow in a scene
 - to/from any point (x,y,z),
 - in any direction (θ,ϕ),
 - at any time (t),
 - at any frequency (λ)
- Enough information to construct any image of the scene at any time

[Funkhouser]
Plenoptic Function Simplifications

• Simplification from 7D to $3 \times 5D$
 – Represent color as RGB: eliminate λ
 – Static scenes: eliminate t

• Other simplifications?
Image-Based Representations

- **7D** Ideal
- **6D** Consider only 3 frequencies (RGB)
- **5D** Consider only one time instant (static scene)
- **4D** Consider only viewpoints inside/outside scene
- **3D** Consider one dimension fewer directions/positions
- **2D** Consider viewpoints at finite set points or angles
IBR Representations

- Image pairs
- Sea of Images
- Lightfields / Lumigraphs
IBR Representations

- Image pairs
- Sea of Images
- Lightfields / Lumigraphs
View Interpolation

- Create novel images by resampling photographs
 - Reference images sample 5D plenoptic function
View Interpolation

- **Method:**
 - Warp nearby reference images to novel viewpoint
 - Blend warped images

Morph with warp defined by reprojection or pixel correspondences
Pixel Correspondences

- Vision (e.g. stereo): disparity
- Feature matching: sparse
- 3D model: possibly coarse

Left

Right

Disparity
View Interpolation

- Problem: changes in visibility
 - Disocclusions
Disocclusions

- Partial solutions:
 - Fill holes by interpolating nearby pixels
 - Fill holes with texture synthesis
Disocclusions

• Another solution (when possible):
 – Multiple samples per pixel at different depths
Disocclusions

- Another solution (when possible):
 - Multiple samples per pixel at different depths
Disocclusions

• Another solution (when possible):
 – Multiple samples per pixel at different depths
View Interpolation Challenges

• Capture
 – How do we obtain a dense set of calibrated images over a large area in a practical manner?

• Data Management
 – How do we store and access the large amount of data?

• Rendering
 – How do we create novel views from a dense sampling of images in real-time?
IBR Representations

- Image pairs
- Sea of Images
- Lightfields / Lumigraphs
Sea of Images

Large-scale Dense Capture

Interactive Walkthroughs

Data Management and Rendering Algorithms
Sea of Images Capture

- Use a hemispherical FOV camera driven on cart

Paraboloidal Catadioptric Camera
[Nayar97]
Sea of Images Capture

- Use a hemispherical FOV camera driven on cart
Sea of Images Capture

- Locate camera by tracking fiducials
Sea of Images Capture

- Result is a “sea of images” spaced a few inches apart
Sea of Images Compression

- Goal: provide access to images along arbitrary viewpoint paths in real-time
Sea of Images Compression

• Approach: create a multiresolution spatial hierarchy of compressed original images and compressed difference images
• Use captured images near the novel viewpoint to create new views
Interpolate three nearest views using detected feature correspondences
Sea of Images Results

- **Bell Labs Museum**
 - 900 square ft
 - 9832 images
 - 2.2 inch spacing

- **Princeton Library**
 - 120 square ft
 - 1947 images
 - 1.6 inches

- **Personal Office**
 - 30 square feet
 - 3475 images
 - 0.7 inches

[Aliaga02]
Sea of Images Results

• **Times**
 – Setup: ~15 minutes
 – Capture: ~30-60 minutes
 – Preprocessing time: 4 to 17 hours

• **Frame rate**
 – 1024x1024 @ 20Hz, 512x512 @ 30Hz
Sea of Images Results
Sea of Images Results
Sea of Images Results
Sea of Images Results

- Render complex light effects (specular highlights)

Cylindrical projection
Sea of Images Results

- Multiresolution pre-filtering: far-to-near image sequence
Sea of Images Results

captured omnidirectional image

reconstructed omnidirectional image
IBR Representations

- Image pairs
- Sea of Images
- Lightfields / Lumigraphs
Lightfields

- In unoccluded space, can reduce plenoptic function to 4D

Outside looking in

Inside looking out
Using Lightfields

• Obtain 2D slices of 4D data set
• Arbitrary views: take other 2D slices
• Challenges:
 – Parameterization
 – Capture
 – Compression
 – Rendering
Lightfield Parameterization

• Point / angle

• Two points on a sphere

• Points on two planes

• Original images and camera positions
Light Field Two-Plane Parameterization

• Two planes, evenly sampled: “light slab”
• In general, planes in arbitrary orientations
• In practice, one plane = camera locations
 – Minimizes resampling
Light Field Two-Plane Parameterization
Light Field Coverage

object must stay within here
observer must stay within here
Multi-Slab Light Fields
Lightfield Capture

• Capture a 2D set of (2D) images

• Choices:
 – Camera motion: human vs. computer
 – Constraints on camera motion
 – Coverage and sampling uniformity
 – Aliasing
Lumigraph Capture

- Capture: move camera by hand
- Camera intrinsics assumed calibrated
- Camera pose recovered from markers
Lightfield Capture

- Levoy 06:
 - Computer-controlled camera rig
 - Move camera to grid of locations on a plane
Lightfield Capture

• Acquire an entire light field at once
• Video rates
• Integrated MPEG2 compression for each camera

(Bennett Wilburn, Michal Smulski, Mark Horowitz)
Lightfield Capture

Lytro
Lightfield Compression

- Compress individual images (JPEG, etc.)
- Adapt video compression to 2D arrays
- Decomposition into basis functions
- Vector quantization
Lightfield Rendering

- How to select rays?
- How to interpolate
Lightfield Rendering

• For each desired ray:
 – Compute intersection with \((u,v)\) and \((s,t)\) planes
 – Take closest ray

• Variants: interpolation
 – Bilinear in \((u,v)\) only
 – Bilinear in \((s,t)\) only
 – Quadrilinear in \((u,v,s,t)\)
Lumigraph Rendering

- Use rough depth information to improve rendering quality
Lumigraph Rendering

- Use rough depth information to improve rendering quality
Lumigraph Rendering

Without using geometry

Using approximate geometry
Lightfields

• **Advantages:**
 – Simpler computation vs. traditional CG
 – Cost independent of scene complexity
 – Cost independent of material properties and other optical effects
 – Avoid hard vision problems

• **Disadvantages:**
 – Static geometry
 – Fixed lighting
 – High storage cost
Other IBR Representations

- Texture maps
- VDTMs
- Surface lightfields
- Unstructured lightfields
- Concentric mosaics
- Panorama
- Etc.

Texture maps are an IBR representation!
IBR Summary

- **Advantages**
 - Photorealistic - by definition
 - Do not have to create 3D detailed model
 - Do not have to do lighting simulation
 - Performance independent of scene

- **Disadvantages**
 - Static scenes only
 - Real-world scenes only
 - Difficult for scenes with specularities, etc.
 - Limited range of viewpoints
 - Limited resolution