Visibility

Tom Funkhouser COS 526, Fall 2016

Slides mostly by Frédo Durand

Visibility

Compute which part of scene can be seen

Visibility

Compute which part of scene can be seen (i.e., line segment from source to point in scene)

- > Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling

- Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling

- Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling

$$L(x', x'') = L_e(x', x'') + \int_S f_r(x, x', x'') L(x, x') V(x, x') G(x, x') dA$$

- Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling

Computational Geometry

Art galleries

Computer vision

- Object recognition
- 3D scene reconstruction
- Next best view planning

Robotics

- Motion planning
- Visibility-based pursuit-evasion
- Self-localization

Outline

Hidden surface removal

Visibility from viewpoint

Shadow map

Visibility from point light source

Aspect graph

Visibility from any point in space

Visibility Skeleton

Visibility between scene elements

Outline

Hidden surface removal <---

Visibility from viewpoint

Shadow map

Visibility from point light source

Aspect graph

Visibility from any point in space

Visibility Skeleton

Visibility between scene elements

Hidden Surface Removal

Compute which part of every primitive can be seen from a point

Hidden Surface Removal

Occlusion by a single occluder

Hidden Surface Removal Problem

Cumulative occlusion by multiple occluders

Hidden Surface Removal Problem

Sorting according to a distance is not enough

Hidden Surface Removal Methods

OPAQUE-OBJECT

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker

A Characterization of Ten Hidden-Surface Algorithms

ALGORITHMS										
					\ -			0.0		
		COMPARIS	SON ALGORITHMS	OBJECT SPACE	(partly each)	IMAGE SPACE	DEPTH PRIORIT	Y ALGORITHMS		
edges edges volumes						area samplan		point sampling		
				LIST PRIORITY	X	\		*		
		/ \	_		a priori	dynamicall, computed	1			
				/	priority	priority	1			
1						t ·	. •	•	•	•
	APPEL 1967	GALIMBERTI, et al 1969	LOUTREL 1967	ROBERTS 1963	SCHUMACKER, et al	NEWELL, et al	WARNOCK 1968	WATKINS	ROMNEY, et al	BOUKNIGHT
RESTRICTIONS	TP,NP	TP,NP	TP,NP	TP, CC, CF, NP	CF, NP, LS (TP)	None	(TR) None	1970 None	TR,CF,NP	1969
E-1-On II S	Promote visibility	Promote visibility	Promote visibility		Frame coherence	None used	Area coherence			50.7319875
COHERENCE	of a vertex to all	of a vertex to all edges at vertex	of a vertex to all edges at vertex		in depth No X coherence used	None used		Scanline X coherence	Scanline Depth Coherence	Scanline X Coherence
SORTING										
	Back Edge Cull 1) Edges separating	Back Edge Cull 1) Edges separating	Back Edge Cull 1) Edges separating back-facing planes 2) Dot product with	1) Edges separating	Intra-Cluster Priority	Z Sort T) Faces, max Z Comparison of	Z Sort (Opt) 1) Faces, max 2 2) Comparison of	Y Sort 1) Edges, min Y	Y Sort 1) Polygons, Y	Y Sort 1) Edges, Min Y
What,	back-facing planes 2) Dot product with normals & topology			normals & topology	(2) Dot product with	max points 3) n logm	max points	2) Comparison 3) Bucket 4) Table of Lists	endpoints 2) Comparison	2) Comparison 3) Bucket
	3) Cull 4) List of edges, E _s 5) 1, E _t	3) Cull 4) List of edges, Es	3) Cull 4) List of edges, E _s 5) 1, E _t	3) Cull 4) List of edges.E_	normals 3) Exhaustive search 4) Ordered table	4) Ordered table 5) 1, F		5) 1, Er	3) 2 bucket 4) Table of lists 5) 1, F _r	4) Table of lists 5) 1, E _r
(2) Method		p) 1, E _t	3) 1, E _t	5) 1, E	5) 0, (off-line)	3, 1, t _T	,, ,, ,,			
(3) Type	Contour Edge Cull 1) Edges separating			Clipping Cull Intersect edge	Inter-Cluster Priority 1) Clusters	Newell Special I) Faces, pairwise	Warnock Special 1) Faces with Window	X Merge	X Sort 1) Edges, X value	X Merge 1) Edges, X value
(4)	front 4 back faces 2) Dot product with	(Omitted)	(Omitted)	vith visible volume 2)	2) Dot product with	(2) Denth bounding	2) Depth, mini-max	2) Comparison	[2] Comparison	2) Comparison
	normals & topology 3) Cull 4) List, E _C			5) Cull 4) E 5) 1; E	separating planes 3) Prefix scan binary tree	boxes, separation 3) Bubble, splittin 4) Ordered table	angles (3) Radix 4 subdivi-	4) 2-way linked	4) Table of lists 5) n. S.	3) Merge (ordered) 4) Linked list 5) E, 2S, (edges)
(5) Number per	5) 1, E _t			7 1, 5,	4) ordered table 5) 1, C,	5) 1.Fr+split faces	4) Stacks of unordered tables	5) E _r , S ₁		
frame, num- ber of ob-	Initial Visibility	Interest Vicibility	Initial Viribility	Edge/Volume Test	S. S.D.		5) L, F,/factor1			•
jects	1) Ray to vertex against all faces 2) Depth,	1) Ray to vertex	Initial Visibility 1) Ray to vertex against all faces 2) Betweenness,	1) Edges visibilit	yl) Faces 2) Dot product with	Y Sort 1) Face segment by Y range	Depth Search 1) Surrounder faces	X Sort 1) Segments, λ left	X Priority Search 1) Edges, X value	1) Edges, X value
(merge) Number of new entries	Curroundedoose	gurroundedness	surroundadness	2) Isness	face normal 3) Cull 4) Smaller ordered	2) Y intercept 3) Bucket	2) 4-corner compare 3) Exhaustive 4) Answer/failure	2) Comparison	2) Comparison 3) Priority search 4) Active segment	2) Comparison 3) Bubble
per frame, length of	Exhaustive search Quantitative	3) Exhaustive search 4) Quantitative visibility of vertex 5) fobjects, F _r	surroundedness 3) Exhaustive search 4) Quantitative visibility of verter	3) Mini-max sort 4) Answer	table	4) None 5) F + split faces Hf	5) L _v , F _r /factor 2	4) 2-way linked list	list 5) n, m	4) 1-way linked list 5) N, 2S _£ (edges)
list (search)	S) # Objects, Fr	5) fobjects, F	5) Pobjects, Fr	5) E _s * split edges, fobjects	27	He		5) n, Sa		
Number of searches,	Edge Intersection	Edge Intersection	Edge Intersection		Y Cull	X Merge	TV Sort (Opt)	Span Cull	7 Search	
1151	with all E	with all B	with all E		1) Faces by Y extent 2) Mini-max on X intercepts	1) Segments, X intercept	TV Sort (Opt) Sort windows into scan-line order if	1) Segments, overlap with sample snan	2 Search 1) Segments, depth 2) Linear equations	Z Search 1) Segments, depth 2) Linear equations
	with sweep triangle 3) Cull (unordered)	picture plane, depth 3) Cull (unordered)	picture plane, depth 3) Cull (unordered) 4) Intersection list		3) Cull (unordered) 4) X intercepts of	2) Comparison 3) Ordered merge 4) Ordered list	needed	 Double comparison Cull ordered list 	and comparison	and comparison
1	4) Intersection list 5) E _s , E _c	 Intersection list E_s, E_s - 1 	5) E _s , E _s - 1		relevant segments 5) n, E _s	5) S _r , S _v /2		5) n*S _v * f (>1), S _v	4) Visible segment 5) n*2S ₄ ,D _C	ordered active list 4) Visible segment
	Sort Along Edge 1) Intersections on	Sort Along Edge 1) Intersections on	Sort Along Edge 1) Intersections on		X Sort 1) Segments			Z Search	(Omitted if X priorities same as	5) n*2S ₁ , D _c
	edge, ordering 2) Comparison	edge, ordering	edge, ordering		2) Counters 3) Hardware			1) Segments, Z 2) Depth by logarithmic search	last time)	
13	3) Bubble 4) Answer	4) Answer	4) Answer	1	4) Segments at this X			 Search (unordered Visible segment 	i)	
	5) E _s , X _V /E _s Omit if well hidden)	(must be done)	5) E _s . X _v /E _s (Omit if well hidden		5) nm, S _t			5) n*S _v *f(>1), D _c		
	and the second state of th				Priority Search 1) Segments, priorit	Į				
					2) Logic network 3) Logic network					•
					4) Visible segment 5) nm, St					
	6	l:	I	1						α α

Figure 29. Characterization of ten opaque-object algorithms b. Comparison of the algorithms.

Sutherland

37

Hidden Surface Removal Methods

Image-space

- Z-buffer
- Scan-line
- Warnock subdivision

Object-space

- Depth-sort
- Weiler-Atherton
- BSP

Line-space

Ray casting

Image-space

Computation performed in the plane of the image

E.g. is triangle inside rectangle?

Usually discretized in pixels

Object-space

3D space where the scene is defined

E.g., triangle is occluded if it is inside the pyramid

Line space

Visibility expressed in terms of rays

E.g. are all rays between the eye and the triangle blocked by the rectangle?

Fredo Durand

Image-space

- + Robust, easier to code, occluder fusion, can use hardware
- Limited to one viewpoint, aliasing, needs hardware

Object-space

- + Precision, can handle from-region visibility
- Often robustness problems, occluder fusion is harder

Line space

- + Natural space, simple atomic operation (ray-casting)
- 4D, often requires approximation, or too complex

Outline

Hidden surface removal

Visibility from viewpoint

Shadow map **←**

Visibility from point light source

Aspect graph

Visibility from any point in space

Visibility Skeleton

Visibility between scene elements

Shadow Maps

Precompute image of depths from light

- Store image of distances from light
- Lookup depth of surface point in image when shade

Shadow Maps

Suitable for hardware pipeline

- Projection into light coordinate system is 4x4 matrix
- Shadow map stored in texture

Problems

- Field of view
- Aliasing

Aliasing

Outline

Hidden surface removal

Visibility from viewpoint

Shadow map

Visibility from point light source

Aspect graph -

Visibility from any point in space

Visibility Skeleton

Visibility between scene elements

There are many possible views of any 3D object

Some produce topologically equivalent visibility solution

Qualitatively different (different aspect)

Fredo Durand

Characterization of the set of possible views of an object

• [Koenderink and Van Doorn 79, Plantinga and Dyer 90, Gigus et al. 90-91, Petitjean et al. 92]

Fredo Durand

For a polygonal scene with *n* edges

- O(n³) visual events
- O(n⁶) for orthographic views
- O(n⁹) for perspective views

More reasonable estimate may be

O(n⁴) and O(n⁶)

Not practical to compute and store!

Outline

Hidden surface removal

Visibility from viewpoint

Shadow map

Visibility from point light source

Aspect graph

Visibility from any point in space

Visibility Skeleton -

Visibility between scene elements

Visibility from Polygon

Umbra and Penumbra

[Nishita et Nakamae 85, Heckbert 92, Teller 92, Lischinski et al. 93,
 Drettakis et Fiume 94, Stewart et Ghali 94]

Visual event

Appearance-disappearance of objects (qualitative change of a view)

Visual event

Appearance-disappearance of objects (qualitative change of a view)

« Wedge » defined by a vertex and an edge

Type EV

Visual event

Appearance-disappearance of objects Limits of umbra

Critical line

Line going through e and v

Critical lines

1D set of lines going through e and v (1 degree of freedom)

Extremal stabbing line

1D set of lines going through e and v (1 degree of freedom)

Extremity: extremal stabbing line (VV) (0 degree of freedom)

Extremal stabbing line

Type VEE (0 degree of freedom)

Adjacent critical line set

Generated by the second edge Same extremity ve_1e_2

Triple-edge event

Visibility skeleton

Graph in line space

Encodes adjacencies of extremal stabbing lines and critical line sets

Visibility Skeleton

Extremal stabbing line = Node

Fredo Durand

Visibility Skeleton

 $e_2e_1e_4$

ve₁

Extremal stabbing line = Node

Critical line set = Arc

Fredo Durand

Visibility Skeleton

Idea:

Graph representation of visual events

Complexity

- Memory: $O(n^4)$ in theory, n^2 observed
- Time: $O(n^5)$ in theory, $n^{2.4}$ observed

Results

- Scenes up to 1500 polygons
 - 1.2 million nodes
 - 32 minutes for computation

Exact computation of form-factors

point-polygon

Discontinuity meshing

- scene subdivision along shadow boundaries
- also for indirect lighting

Refinement criterion

- perceptual metric
- error estimation

Radiosity with Visibility Skeleton

492 polygons: 10 minutes 23 seconds

Fredo Durand

Radiosity with Visibility Skeleton

Summary

Object-space visibility

- Help understand the nature of visibility
- Offer insights about which algorithms will work well
- Generally difficult to code an make robust

Image-space visibility

- Usually only for visibility from a point
- Can be implemented with graphics hardware
- Usual benefits/problems of image-precision computation