COS526: Advanced Computer Graphics

Tom Funkhouser Fall 2016

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Jensen

CS526 Syllabus

- •Global illumination
 - Monte Carlo path tracing
 - Photon mapping

RGBD point sets

- Image processing
- Image-based rendering
- 3D reconstruction

Polygonal meshes

- Mesh representations
- Mesh analysis
- Shape collections
- Special topics
 - Computational photography?
 - Fabrication?
 - Others?

Global illumination
Monte Carlo path tracing
Photon mapping

•RGBD point sets

- Image processing
- Image-based rendering
- 3D reconstruction

Polygonal meshes

- Mesh representations
- Mesh analysis
- Shape collections
- Special topics
 - Computational photography?
 - Fabrication?
 - Others?

Global illumination
 Monte Carlo path tracing
 Photon mapping

RGBD point sets

- Image processing
- Image-based rendering
- 3D reconstruction

Polygonal meshes

- Mesh representations
- Mesh analysis
- Shape collections
- Special topics
 - Computational photography?
 - Fabrication?
 - Others?

- Global illumination
 - Monte Carlo path tracing
 - Photon mapping

•RGBD point sets

- Image processing
- Image-based rendering
- 3D reconstruction

Polygonal meshes

- Mesh representations
- Mesh manipulation
- Shape analysis

Special topics

- Computational photography?
- Fabrication?
- Others?

- Global illumination
 - Monte Carlo path tracing
 - Photon mapping

RGBD point sets

- Image processing
- Image-based rendering
- 3D reconstruction

Polygonal meshes

- Mesh representations
- Mesh analysis
- Shape collections

Special topics

- o Computational photography?
- 3D printing?
- Others?

→ C A D w	× ww.cs.princeton.edu/courses/archive/fall16/cos526/sv	/labus.php	Q 🔬 🛐			
				-		
Syllabus (tentative)						
Week	Lectures (click for notes)	Readings				
Wed 9/14	Rendering Equation	[kajiya86] [zimmerman98] [greenberg97]				
1 Mon 9/19	Monte Carlo Path Tracing	[jensen03]				
Wed 9/21	Photon Mapping	[jensen96] [jensen01] [radiometry]				
2 Mon 9/26	Reflectance					
Tue 9/27	Written Exercise 1 due					
Wed 9/28	Radiosity	[cohen88]				
3 Mon 10/3	Real-time Rendering					
Wed 10/5	Image-Based Rendering	[shum00] [levoy96]				
Sun 10/9	Programming Assignment 1 due					
4 Mon 10/10	Point Sets	[kobbelt04] [pfister00] [rusinkiewicz00]				
Wed 10/12	Point Set Processing					
5 Mon 10/17	Point Set Surface Reconstruction	[hoppe92] [kazhdan06]				
Tue 10/18	Written Exercise 2 due					
Wed 10/19	Point Set Alignment	[tam13] [rusinkiewicz01] [henry10]				
6 Mon 10/24	Point Set Segmentation and Labeling					
Wed 10/26	Point Set Completion					
Fri 10/28	Programming Assignment 2 due					
	Fall break!					
7 Mon 11/7	Polygonal Meshes	[botsch08] [alliez08]				
Wed 11/9	Polygonal Mesh Analysis	[<u>mitra14</u>] [<u>levy09</u>] [<u>zhang10</u>]				
8 Mon 11/14	Polygonal Mesh Manipulation	[sorkine05]				
Wed 11/16	Polygonal Mesh Correspondence	[hormann08] [vankaick10]				
9 Sun 11/20	Written Exercise 3 due					
Mon 11/21	Polygonal Mesh Segmentation	[shamir08]				
Wed 11/23	Thanksgiving					
10 Mon 11/28	TBA					
Wed 11/30	TBA					
Wed 11/30	Programming Assignment 3 due					
11 Mon 12/5	TBA					
Wed 12/7	TBA					
Wed 12/7	Final Project Proposal due					
12 Mon 12/12	Final Project Talks I					
Wed 12/14	Final Project Talks II					
	Winter break!					

Coursework

- 3 Short written exercises
- 3 Programming assignments

Final project

Let's Get Started

Goal

Synthesize image of a 3D scene accounting for all paths of light transport (including indirect illumination)

Henrik Wann Jensen

Paul Debevec

Henrik Wann Jensen

RenderPark

Outline

Rendering equation

• Explanation of terms

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Rendering Equation (1)

Compute radiance in outgoing direction by integrating reflections over all incoming directions

 $L_{o}(x',\bar{\omega}') = L_{e}(x',\bar{\omega}') + \int_{\Omega} f_{r}(x',\bar{\omega},\bar{\omega}')L_{i}(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$

What is $\vec{\omega}$?

 $\vec{\omega}$ is a direction

 \circ 2-dimensional: (ϕ , θ)

What is L?

Radiance = power emitted from a surface in a direction \circ Power d Φ per unit area dA_p per unit solid angle d ω

Digression – Why Cosine Term?

Foreshortening is by cosine of angle.

Radiance gives energy by *effective* surface area.

Digression – What is Solid Angle?

Angle in radians

Solid angle in steradians

Digression – Why Radiance?

Radiance doesn't change with distance

• Therefore it's the quantity we want to measure in a path tracer

Radiance is proportional to what a sensor (camera, eye) measures.

• Therefore it's what we want to output

Digression – What Units?

Light is a form of energy

• Measured in Joules (J)

Power: energy per unit time

- Measured in Joules/sec = Watts (W)
- \circ Also called Radiant Flux (Φ)

Radiance:

• Measured in W/m²/sr

Rendering Equation (1) ... Again

Compute radiance in outgoing direction by integrating reflections over all incoming directions

 $L_{o}(x',\bar{\omega}') = L_{e}(x',\bar{\omega}') + \int_{\Omega} f_{r}(x',\bar{\omega},\bar{\omega}')L_{i}(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$

What is f_r ?

Bidirectional Reflectance Distribution Function (f_r) = fraction of irradiance E_i in incoming direction $\vec{\omega}_i$ reflected in outgoing direction $\vec{\omega}_o$

 $f_r(\omega_i \to \omega_o) = \frac{L_o(\omega_o)}{E_i(\omega_i)}$

 $E_i(\vec{\omega}_i) \equiv L_i(\vec{\omega}_i) \cos \theta_i d\omega$

$$f_r(\vec{\omega}_i \to \vec{\omega}_o) \equiv \frac{L_o(\vec{\omega}_o)}{L_i(\vec{\omega}_i)\cos\theta_i d\omega_i}$$

What is f_r ?

BRDF (f_r) is usually a 4-dimensional function for each of three frequencies:

$$f_r(\theta_i, \varphi_i, \theta_o, \varphi_o) = \frac{L_o(\theta_o, \varphi_o)}{E_i(\theta_i, \varphi_i)}$$

BRDF (f_r) is an intrinsic property of a surface material
 Provided as part of material with scene description

Outgoing radiance and incoming irradiance are proportional to one another:

$$dL_o(\vec{\omega}_o) \propto dE_i(\vec{\omega}_i)$$

Rendering Equation (1) ... Again

Compute radiance in outgoing direction by integrating reflections over all incoming directions

 $L_{o}(x',\bar{\omega}') = L_{e}(x',\bar{\omega}') + \int_{\Omega} f_{r}(x',\bar{\omega},\bar{\omega}')L_{i}(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$

Rendering Equation (2)

Compute radiance in outgoing direction by integrating reflections of light from other surfaces

Kajiya 1986

 $L(x' \to x'') = L_e(x' \to x'') + \int_S f_r(x \to x' \to x'') L(x \to x') V(x, x') G(x, x') dA$

What is V(x,x')G(x, x')?

Irradiance at x in direction $\vec{\omega}$ as a fraction of radiance leaving x' in direction $\vec{\omega}$

Move surface away from light: Inverse square law: $E \sim 1/r^2$ Tilt surface away from light: Cosine law: $\mathbf{E} \sim \mathbf{n} \cdot \mathbf{l}$

Outline

Rendering equationExplanation of terms

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Outline

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Direct Illumination

OpenGL

$$L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \int_{\Omega} f_r(x',\bar{\omega},\bar{\omega}') L_i(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$$

Assume direct illumination from point lights and ignore visibility

Outline

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Recursive Ray Tracing

 $L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \sum_{i=1}^{nlights} f_r(x',\bar{\omega},\bar{\omega}') L_i(x',\bar{\omega})(\bar{\omega}\bullet\bar{n}) + specular$

Outline

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Distribution Ray Tracing

$$L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \int_{\Omega} f_r(x',\bar{\omega},\bar{\omega}') L_i(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$$

Estimate integral for each reflection by random sampling

Also:

- Depth of field
- Motion blur
- etc.

Outline

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Path Tracing

Path Tracing

Estimate integral for each pixel by sampling paths from the camera

Outline

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Photon Mapping

Two pass method:

- 1. Build photon map by tracing paths from lights
- 2. Render image by tracing paths from camera

Photon Mapping

Two pass method:

- 1. Build photon map by tracing paths from lights
- 2. Render image by tracing paths from camera

Photon Mapping

Two pass method:

- 1. Build photon map by tracing paths from lights
- 2. Render image by tracing paths from camera

Outline

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- ➢Radiosity
- etc.

Discretize surfaces into small patches

Assume simple function (constant) is good approximation for radiosity (sum of all energy leaving a point) within a patch

Leads to sparse linear system of equations

$$B_i A_i = E_i A_i + \rho_i \sum_{j=1}^N F_{ji} B_j A_j$$

Outline

Rendering equation

• Explanation of terms

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Which method is best?

Summary

Rendering equation

• Rendering is integration

Different solution methods are best for different types of scenes (depending on path types)

- Direct illumination LDE
- Recursive ray tracing LDS*E
- Distribution ray tracing L(SD)*E
- Path tracing- L(SD)*E
- Photon Mapping– L(SD)*E (biased)
- Radiosity LD*E

• etc.

Radiometric and Photometric Units

Radiant energy	Luminous energy		
Joule (J)	Talbot		
Radiant flux or power (F)	Luminous power		
Watt (W) = J / sec	Lumen (Im) = talbot / sec = cd · sr		
Radiant intensity (I)	Luminous intensity		
W/sr	Candela (cd)		
Irradiance (E)	Illuminance		
W / m ²	$Lux = Im / m^2$		
Radiance (L)	Luminance		
W/m²/sr	Nit = Im / m² / sr		
Radiosity (B)	Luminosity		
W / m ²	$Lux = Im / m^2$		