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(These notes are a slightly modified version of notes from previous offerings of the class
scribed by Sanjeev.)

Today’s topic is simple but gorgeous: Karger’s min cut algorithm and its extension.
It is a simple randomized algorithm for finding the minimum cut in a graph: a subset of
vertices S in which the set of edges leaving S, denoted E(S, S) has minimum size among
all subsets. You may have seen an algorithm for this problem in your undergrad class that/
uses maximum flow. Karger’s algorithm is elementary and and a great introduction to
randomized algorithms.

1 Karger’s Algorithm

The basic subroutine in Karger’s algorithm is edge-contraction: given an edge e = {u, v} in
a graph G with vertices V (of size n) and edges E, contraction of e produces a new graph
G′ = G \ e with n− 1 size vertex set V \ {u, v} ∪ Su,v where Su,v is a super-node obtained
by merging u and v. In this process, we remove all edges incident to either u or v and make
them incident to Su,v instead, remove self-loops and retain parallel edges (so at any point
in the sequence of edge-contractions, we will have a multigraph in general).

Consider the following general procedure to obtain a cut: Choose an edge e, contract
it and repeat. Each edge contraction decreases the number of vertices in the graph by 1.
Thus, in n−2 steps, the number of vertices remaining in the graph is 2. The two supernodes
remaining then define a cut in the original graph given by the partition corresponding to the
supernodes. We want to choose a sequence of edge contractions so that the 2 supernodes
remaining define a min-cut in the graph. Karger’s algorithm makes this choice extremely
simple- just choose an edge uniformly at random from the remaining edges in the graph!

Formally, Karger’s algorithm is:

1. Repeat the following until 2 supernodes are left:

2. Pick a uniformly random edge e and perform edge-contraction with e.

3. Output the cut corresponding to the supernodes as the guess for a min-cut in the
graph.

Why should this algorithm work? The intuition is that a particular cut survives n − 2
contractions if every one of the n− 2 edges chosen in Karger’s algorithm are not from the
cut. If you pick a random edge, it is more likely to come from parts of the graph that
contain more edges and thus, since a min-cut should contain a small number of edges, the
probability that an edge is picked from it should be small. In fact, this algorithm provides
a great heuristic to try on all kinds of real-life graphs, where one wants to cluster the nodes
into “tightly-knit”portions. For example, social networks may cluster into communities;
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graphs capturing similarity of pixels may cluster to give different portions of the image
(sky, grass, road etc.). Thus instead of continuing Karger’s algorithm until you have two
supernodes left, you could stop it when there are k supernodes and try to understand
whether these correspond to a reasonable clustering.

Today we will first see that the above version of the algorithm yields the optimum min
cut with probability at least 2/n2. Thus we can repeat it say 20n2 times, and output the
smallest cut seen in any iteration. The probability that the optimum cut is not seen in any
repetition is at most (1− 2/n2)20n

2
< 0.01.

Unfortunately, this simple version has running time about n4 which is not great.
So then we see a better version with a simple tweak that brings the running time down

to closer to n2. The idea is that roughly that repetition ensures fault tolerance. The real-life
advice of making two backups of your hard drive is related to this: the probability that both
fail is much smaller than one does. In case of Karger’s algorithm, the overall probability
of success is too low. But if run part of the way until the graph has n/

√
2 supernodes,

the chance that the mincut hasn’t changed is at least 1/2. So you make two independent
runs that go down to n/

√
2 supernodes, and recursively solve both of these. Thus the

expected number of instances that will yield the correct mincut is 2× 1
2 = 1. (Unwrapping

the recursion, you see that each instance of size n/
√

2 will generate two instances of size
n/2, and so on.) Simple induction shows that this 2-wise repetition is enough to bring the
probability of success above 1/ log n.

As you might suspect, this is not the end of the story but improvements beyond this
get more hairy. If anybody is interested I can give more pointers.

Also this algorithm forms the basis of other algorithms for other tasks. Again, talk to
me for pointers.

2 Analysis of Karger’s algorithm

Clearly, the two supernodes at the end correspond to a cut of the original graph, so the
algorithm does always return a cut.

Let’s analyze what happens to a given cut under a sequence of edge contractions. The
following observation is easy to verify but quite useful.

Observation 1
Let G′ be obtained by a sequence of edge contractions of G. Then, there’s a one-one
correspondence between every cut (Y, Ȳ ) of G′ and the cut (X, X̄) obtained by taking the
union of nodes of G in the supernodes in Y .

Let’s now formalizing the intuition that an edge is likely not to be from a min-cut. In
the following, the notation e ∼ E will denote a uniformly random draw of an edge e from
E.

Lemma 1
Let (X, X̄) be a min-cut of a graphG on n vertices. LetG′ be a graph obtained by a sequence
of t edge contractions for n− 2 ≥ t ≥ 0 obtained by a sequence of edge contractions where
each of the chosen edges are not from the cut (X, X̄). Then, Pre∼E(G′)[e ∈ (X, X̄)] ≤ 2/n.
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Proof: It is easy to show this lemma for the case of t = 0 (i.e. when G′ = G.) Suppose
that the size of the min-cut in the graph G is k. Then, observe that the degree of every
vertex must be at least k (otherwise, the vertex v forms a cut (v, V \ v) of size smaller than
k). Thus, the total number of edges in the graph must be at least nk/2 and a uniformly
random edge has probability of being inside a given min-cut is at most 2/n.

For the general case, we only need observe that the min-cut of G′ is of size exactly k.
This is because by Observation 1 above, every cut in G′ corresponds to a cut in G which
has size at least k and the cut (X, X̄) has a corresponding cut in G′ by the assumption
about the edges contracted in the process of obtaining G. 2

The above estimate shows that as edge-contraction process succeeds, it becomes more
and more likely that we pick an edge from a given min-cut. Nevertheless, we can obtain a
decent bound on the probability that we never pick an edge from a given min-cut in all of
the n− 2 steps.

Lemma 2
Suppose we run Karger’s algorithm till the point that there are ` supernodes left for ` ≥ 2.
Then, the probability that no edge is contracted from a given min-cut (X, X̄) in this process

is at least
(`
2)

(n2)
. In particular (by choosing ` = 2), the cut at the end is a minimum cut of

the original cut with probability at least 2
n(n−1) .

Proof: Let e1, e2, . . . , en−` be the sequence of edges contracted in the algorith. We can
estimate this probability as: Pr[e1 6∈ (X, X̄)] · Pr[e2 6∈ (X, X̄) | e1 6∈ (X, X̄)] · · ·Pr[en−` 6∈
(X, X̄) | e1, e2, . . . , en−`−1 6∈ (X, X̄)].

Using Lemma 1, the above product can be estimated from below by:

(1− 2

n
) · (1− 2

n− 1
) · · · (1− 2

`+ 1
)

The above expression can be easily seen to be equal to
(`
2)

(n2)
. 2

Thus, repeating the algorithm K times for K = t
(
n
2

)
and taking the smallest of all the

cuts found in the K runs will yield a min-cut with probability at least 1−(1− 2
n(n−1))

K ≥ 1−
e−t. By making t = log (1/ε), we can make the probability of Karger’s algorithm succeeding
in finding a min-cut to be at least 1− ε.

(Aside: The sequence (1 − 1/K)K is monotonnically increasing and converges to 1/e
very fast - for large enough K, we can thus approximate it by 1/e. This is a useful technical
tool and will appear in later lectures.)

It is relatively easy using data structures you learnt in undergrad algorithms to im-
plement each repetition of the algorithm in O(n2) time. So the overall running time is
O(n4).

Aside: We have proven a stronger result than we had needed to: every minimum cut
remains at the end with probability at least 2

n(n−1) . This implies in particular that the

number of minimum cuts in an undirected graph is at most
(
n
2

)
(Note that the number of

cuts in the graph is the set of all nonempty subsets, which is 2n − 1, so this implies only a
tiny number of all cuts can be minimum cuts.) This upper bound has had great impact in
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subsequent theory of algorithms, though we will not have occasion to explore that in this
course.

3 Improvement by Karger-Stein

Karger and Stein improved the algorithm to run in O(n2 log2 (n)) time. The idea is roughly
that repetition ensures fault tolerance. The real-life advice of making two backups of your
hard drive is related to this: the probability that both fail is much smaller than one does.
In case of Kargers algorithm, the overall probability of success is too low at 2

n(n−1) . But if
run part of the way until the graph has then Lemma 1 shows that the probability that the
mincut has survived (i.e. no edge in it has been contracted ) is at least 1

2 . So you make two

independent runs that go down to n/
√

2 supernodes, and recursively solve both of these
with the same Karger-Stein algorithm. Then return the smaller of the two cuts returned
by the recursive calls. The running time for such an algorithm satisfies the recurrence

T (n) = O(n2) + 2T (n/
√

2) (1)

One can now use the Master theorem 1 to show that the above recurrence has the
solution: T (n) = O(n2 log (n)). As you might suspect, this is not the end of the story but
improvements beyond this get more hairy. If anybody is interested I can give more pointers.

The major remaining claim of the analysis is to estimate that a given min-cut survives
a run of the Karger-Stein algorithm.

Lemma 3
Let (X, X̄) be a min-cut of G. Then, the probability that Karger-Stein algorithm outputs
(X, X̄) is at least c

log (n) for some constant c > 0.

Thus repeating the algorithm Cc log (n)) times gives a success probability at least 1−e−c
from a calculation as before and a running time of O(n2 log2 (n)).
Proof: To prove the lemma, we again write a recurrence relationship for the probability
of survival of a min-cut (X, X̄) in a Karger-Stein run.

If P (n) is this probability, then it must satisfy:

P (n) ≥ 1− (1− 1

2
P (n/

√
2))2 (2)

where (1− 1
2P (n/

√
2))2 represents the probability of the event that a minimum cut survived

in the shrinkage to n/
√

2 2 vertices, and the recursive call then recovered this minimum
cut.

To see that this has the solution P (n) ≥ c/ log (n), we can do a simple induction, where
the inductive step needs to verify that:

1

log (n)
≤ 1− (1− 1

2

1

log (n)− 0.5
)2 =

1

log (n) = 0.5
−
(

1

4(log (n)− 0.5)

)2

1Hush, hush, dont tell anybody, but most researchers dont use the Master theorem, even though it
was stressed a lot in undergrad algorithms. When we need to solve such recurrences, we just unwrap the
recurrence a few times and see that there are O(log (n)) levels, and each involves O(n2) time operations
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which is true using the approximation:

1

log (n) = 0.5
≈ 1

log (n)
+

0.5

log2 (n)

2
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