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Today we study random walks on graphs. When the graph is allowed to be directed
and weighted, such a walk is also called a Markov Chain. These are ubiquitous in modeling
many real-life settings.

Example 1 (Drunkard’s walk) There is a sequence of 2n + 1 pubs on a street. A
drunkard starts at the middle house. At every time step, if he is at pub number i, then
with probability 1/2 he goes to pub number i − 1 and with probability 1/2 to pub i + 1.
How many time steps does it take him to reach either the first or the last pub?

Thinking a bit, we quickly realize that the first m steps correspond to m coin tosses,
and the distance from the starting point is simply the difference between the number of
heads and the number of tails. We need this difference to be n. Recall that the number
of heads is distributed like a normal distribution with mean m/2 and standard deviation√
m/2. Thus m needs to be of the order of n2 before there is a good chance of this random

variable taking the value m+ n/2.
Thus being drunk slows down the poor guy by a quadratic factor.

Example 2 (Exercise) Suppose the drunkard does his random walk in a city that’s de-
signed like a grid. At each step he goes North/South/East/West by one block with prob-
ability 1/4. How many steps does it take him to get to his intended address, which is n
blocks north and n blocks east away?

Random walks in space are sometimes called Brownian motion, after botanist Robert
Brown, who in 1826 peered at a drop of water using a microscope and observed tiny particles
(such as pollen grains and other impurities) in it performing strange random-looking move-
ments. He probably saw motion similar to the one in the figure. Explaining this movement
was a big open problem. During his “miraculous year”of 1905 (when he solved 3 famous
open problems in physics) Einstein explained Brownian motion as a random walk in space
caused by the little momentum being imparted to the pollen in random directions by the (in-
visible) molecules of water. This theoretical prediction was soon experimentally confirmed
and seen as a “proof”of the existence of molecules. Today random walks and brownian
motion are used to model the movements of many systems, including stock prices.

Example 3 (Random walks on graph) We can consider a random walk on a d-regular
graph G = (V,E) instead of in physical space. The particle starts at some vertex v0 and at
each step, if it is at a vertex u, it picks a random edge of u with probability 1/d and then
moves to the other vertex in that edge. There is also a lazy version of this walk where he
stays at u with probability 1/2 and moves to a random neighbor with probability 1/2d.

Thus the drunkard’s walk can be viewed as a random walk on a line graph.
One can similarly consider random walks on directed graph (randomly pick an outgoing

edge out of u to leave from) and walks on weighted graph (pick an edge with probability
proportional to its weight). Walks on directed weighted graphs are called Markov Chains.
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Figure 1: A 2D Random Walk

In a random walk, the next step does not depend upon the previous history of steps, only
on the current position/state of the moving particle. In general, the term markovian refers
to systems with a “memoryless”property. In an earlier lecture we encountered Markov
Decision Processes, which also had this memoryless property.

0.0.1 Application: Bigram and trigram models

Markovian models are ubiquitous in applications. (Remember for example the Markov De-
cision Processes we encountered earlier.) Language recognition systems work by constantly
predicting what’s coming next. Having heard the first i words they try to generate a predic-
tion of the i+ 1th word1. This is a very complicated piece of software, but one underlying
idea is to model language generation as a Markov chain. (This is not an exact model;
language is known to not be Markovian, at least in the simple way described below.)

The simplest idea would be to model this as a markov chain on the words of a dictionary.
Recall that everyday English has about 5, 000 words. A simple markovian model consists
of thinking of a piece of text as a random walk on a space with 5000 states (= words).
A state corresponds to the last word that was just seen. For each word pair w1, w2 there
is a probability pw1,w2 of going from w1 to w2. According to this Markovian model, the
probability of generating a sentence with the words w1, w2, w3, w4 is qw1pw1w2pw2w3pw3w4

where qw1 is the probability that the first word is w1.
To actually fit such a model to real-life text data, we have to estimate 5, 000 probabilities

qw1 for all words and (5, 000)2 probabilities pw1w2 for all word pairs. Here

pw1w2 = Pr[w2 | w1] =
Pr[w2w1]

Pr[w1]
,

namely, the probability that word w2 is the next word given that the last word was w1.
One can derive empirical values of these probabilities using a sufficiently large text

corpus. (Realize that we have to estimate 25 million numbers, which requires either a very
large text corpus or using some shortcuts.)

1You can see this while typing in the text box on smartphones, which always display their guesses of the
next word you are going to type. This lets you save time by clicking the correct guess.
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An even better model in practice is a trigram model which uses the previous two words
to predict the next word. This involves a markov chain containing one state for every pair of
words. Thus the model is specified by (5, 000)3 numbers of the form Pr[w3 | w2w1]. Fitting
such a model is beyond the reach of current computers but we won’t discuss the shortcuts
that need to be taken.

Example 4 (Checking the randomness of a person) Suppose you ask your friend to
write down a sequence of 200 random bits. Then how “random”is their output? In other
words, is their brain capable of actually generating 200 random bits? If yes, then after
seeing the first 199 bits you should not have a better than 50-50 chance of predicting the
200th bit.

In practice, people tend to skew their distributions because of a mistaken notion of what
a random string should look like. For instance, suppose the last three bits were 0. Then
they might think that a fourth 0 would not look too random, so they may make that bit
a 1. This is of course wrong since the next bit is then biased towards being 1. These sort
of patterns will tend to make their output not random —meaning given the last n bits you
may have a good chance of predicting the n+1’st.

This naturally leads to a Markovian model to try to predict the next bit. Its state space
could be, say, the set of all sequences of 3 bits, and the current state denotes the last three
bits output by your friend. Transitions are defined by the next bit they output. Thus if the
current state is 011 and they output a 0 then the state becomes 110.

This model has 8 states, and 16 transitions, and given a long enough sequence from your
friend you can estimate the transition probabilities, which gives you a way to learn his/her
secret nonrandom patterns. Then you have a better than 50-50 chance of predicting the
next bit.

0.1 Recasting a random walk as linear algebra

A Markov chain is a discrete-time stochastic process on n states defined in terms of a
transition probability matrix (M) with rows i and columns j.

M =
(
Mij

)
where Mij corresponds to the probability that the state at time step t+ 1 will be j, given
that the state at time t is i. This process is memoryless in the sense that this transition
probability does not depend upon the history of previous transitions.

Therefore, each row in the matrix M is a distribution, implying Mij ≥ 0∀i, j ∈ S and∑
jMij = 1. The bigram or trigram models are examples of Markov chains.
Using a slight twist in the viewpoint we can use linear algebra to analyse random walks.

Instead of thinking of the drunkard as being at a specific point in the state space, we think
of the vector that specifies his probability of being at point i ∈ S. Then the randomness
goes away and this vector evolves according to deterministic rules. Let us understand this
evolution.

Let the initial distribution be given by the row vector x ∈ <n, xi ≥ 0 and
∑

i xi = 1.
After one step, the probability of being at space i is

∑
j xjMji, which corresponds to a new

distribution xM. It is easy to see that xM is again a distribution.
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Sometimes it is useful to think of x as describing the amount of probability fluid sitting
at each node, such that the sum of the amounts is 1. After one step, the fluid sitting at
node i distributes to its neighbors, such that Mij fraction goes to j.

Suppose we take two steps in this Markov chain. The memoryless property implies that
the probability of going from i to j is

∑
kMikMkj , which is just the (i, j)th entry of the

matrix M2. In general taking t steps in the Markov chain corresponds to the matrix M t,
and the state at the end is xM t. Thus the

Definition 1 A distribution π for the Markov chain M is a stationary distribution if
πM = π.

Example 5 (Drunkard’s walk on n-cycle) Consider a Markov chain defined by the
following random walk on the nodes of an n-cycle. At each step, stay at the same node
with probability 1/2. Go left with probability 1/4 and right with probability 1/4.

The uniform distribution, which assigns probability 1/n to each node, is a stationary
distribution for this chain, since it is unchanged after applying one step of the chain.

Definition 2 A Markov chain M is ergodic if there exists a unique stationary distribution
π and for every (initial) distribution x the limit limt→∞ xMt = π.

In other words, no matter what initial distribution you choose, if you let it evolve long
enough the distribution converges to the stationary distribution. Some basic questions
are when stationary distributions exist, whether or not they are unique, and how fast the
Markov chain converges to the stationary distribution.

Does Definition 1 remind you of something? Almost all of you know about eigenvalues,
and you can see that the definition requires π to be an eigenvector which has all nonnegative
coordinates and whose corresponding eigenvalue is 1.

In today’s lecture we will be interested in Markov chains corresponding to undirected
d-regular graphs, where the math is easier because the underlying matrix is symmetric:
Mij = Mji.

Eigenvalues. Recall that if M ∈ <n×n is a square symmetric matrix of n rows and
columns then an eigenvalue of M is a scalar λ ∈ < such that exists a vector x ∈ <n for
which M ·x = λ ·x. The vector x is called the eigenvector corresponding to the eigenvalue
λ. M has n real eigenvalues denoted λ1 ≤ ... ≤ λn. (The multiset of eigenvalues is called
the spectrum.) The eigenvectors associated with these eigenvalues form an orthogonal basis
for the vector space <n (for any two such vectors the inner product is zero and all vectors
are linear independent). The word eigenvector comes from German, and it means “one’s
own vector. ”The eigenvectors are n prefered directions u1, u2, . . . , un for the matrix, such
that applying the matrix on these directions amounts to simple scaling by the corresponding
eigenvalue. Furthermore these eigenvectors span <n so every vector x can be written as a
linear combination of these.

Example 6 We show that every eigenvalue λ of M is at most 1. Suppose ~e is the cor-
responding eigenvector. Say the largest coordinate is i. Then λei =

∑
j:{i,j}∈E

1
dej by

definition. If λ > 1 then at least one of the neighbors must have ej > ei, which is a con-
tradiction. By similar argument we conclude that every eigenvalue of M is at most −1 in
absolute value.
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0.1.1 Mixing Time

Informally, the mixing time of a Markov chain is the time it takes to reach “nearly station-
ary” distribution from any arbitrary starting distribution.

Definition 3 The mixing time of an ergodic Markov chain M is t if for every starting
distribution x, the distribution xM t satisfies

∣∣xM t − π
∣∣
1
≤ 1/4. (Here |·|1 denotes the `1

norm and the constant “1/4” is arbitrary.)

Example 7 (Mixing time of drunkard’s walk on a cycle) Let us consider the mix-
ing time of the walk in Example 5. Suppose the initial distribution concentrates all prob-
ability at state 0. Then 2t steps correspond to about t random steps (= coin tosses) since
with probability 1/2 the drunk does not move. Thus the location of the drunk is

(#(Heads) − #(Tails)) (mod n).

As argued earlier, it takes Ω(n2) steps for the walk to reach the other half of the circle
with any reasonable probability, which implies that the mixing time is Ω(n2). We will soon
see that this lowerbound is fairly tight; the walk takes about O(n2 log n) steps to mix well.

0.2 Upper bounding the mixing time (undirected d-regular
graphs)

For simplicity we restrict attention to random walks on regular graphs. Let M be a Markov
chain on a d-regular undirected graph with an adjacency matrix A. Then, clearly M = 1

dA.

Clearly, 1
n
~1 is a stationary distribution, which means it is an eigenvector of M . What is

the mixing time? In other words if we start in the initial distribution x then how fast does
xM t converge to ~1?

First, let’s identify two hurdles that would prevent such convergence, and in fact prevent
the graph from having a unique stationary distribution. (a) Being disconnected: if the walk
starts in a vertex in one connected component, it never visits another component, and
vice versa. So two walks starting in the two components cannot converge to the same
distribution, no longer how long we run them. (b) Being bipartite: This means the graph
consists of two sets A,B such that there are no edges within A and within B; all edges go
between A and B. Then the walk starting in A will bounce back and forth between A and
B and thus not converge.

Example 8 (Exercise: ) Show that if the graph is connected, then every eigenvalue of M
apart from the first one is strictly less than 1. However, the value −1 is still possible. Show
that if −1 is an eigenvalue then the graph is bipartite.

Note that if x is a distribution, x can be written as

x = ~1
1

n
+

n∑
i=2

αiei

where ei are the eigenvectors of M which form an orthogonal basis and 1 is the first eigen-
vector with eigenvalue 1. (Clearly, x can be written as a combination of the eigenvectors;
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the observation here is that the coefficient in front of the first eigenvector ~1 is ~1 · x/
∣∣∣~1∣∣∣2

2

which is 1
n

∑
i xi = 1

n .)

M tx = M t−1(Mx)

= M t−1(
1

n
~1 +

n∑
i=2

αiλiei)

= M t−2(M(
1

n
~1 +

n∑
i=2

αiλiei))

. . .

=
1

n
~1 +

n∑
i=2

αiλ
t
iei

Also

‖
n∑
i=2

αiλ
t
iei‖2 ≤ λtmax

where λmax is the second largest eigenvalue of M in absolute value. This calculation uses
the fact that

∑
i αiei is a unit vector and hence has `2 norm 1. We are also using the fact

that the total `2 norm of any distribution is
∑

i x
2
i ≤

∑
i xi = 1.

Thus we have proved
∣∣M tx− 1

n1
∣∣
2
≤ λtmax. Mixing times were defined using `1 distance,

but Cauchy Schwartz inequality relates the `2 and `1 distances: |p|1 ≤
√
n |p|2. So if

λtmax < 1/n2 say, then the walk will have mixed. So we have shown:

Theorem 1
The mixing time is at most O( logn

1−|λmax
|).

Note also that if we let the Markov chain run for O(k log n/λmax) steps then the distance
to uniform distribution drops to exp(−k). This is why we were not very fussy about the
constant 1/4 in the definition of the mixing time earlier.
Remark: What if λmax is 1 (i.e., −1 is an eigenvalue)? This breaks the proof and in fact
the walk may not be ergodic. However, we can get around this problem by modifying the
random walk to be lazy, by adding a self-loop at each node that ensures that the walk stays
at a node with probability 1/2. Then the matrix describing the new walk is 1

2(I +M), and
its eigenvalues are 1

2(1 + λi). Now all eigenvalues are less than 1 in absolute value. This is
a general technique for making walks ergodic.

Example 9 (Exercise) Compute the eigenvalues of the drunkard’s walk on the n-cycle
and show that its mixing time is O(n2 log n).

0.2.1 Application 2: Metropolis Algorithm and Multivariate Statistics

Multivariate statistics —useful in a variety of areas including statistical physics and machine
learning—involves computing properties of a distribution for which only the density function
is known. Say the distribution is defined on {0, 1}n and we have a function µ(x) that is
nonnegative and computable in polynomial time given x ∈ {0, 1}n. (For instance, statistical
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physicists are interested in Ising models, where µ(x) has the form exp(
∑

ij aijxixj).) Then
we wish to sample from the distribution where probability of getting x is proportional to
µ(x). Since probabilities must sum to 1, we conclude that this probability is µ(x)/N where
N =

∑
x∈{0,1}n f(x) is the so-called partition function.

The main problem problem here is that partition function is in general NP-hard to
compute, meaning ability to compute it even approximately allows us to solve SAT. Let’s
see this. Suppose the formula has n variables and m clauses. For any assignment x define
µ(x) = 22nfx where fx = number of clauses satisfied by x. Clearly, µ(x) is computable
in polynomial time given x. If the formula has a satisfiable assignment, then N > 22nm

whereas if the formula is unsatisfiable then N < 2n × 22n(m−1) < 22nm. In particular, the
mass µ(x) of a satisfying assignment exceeds the mass of all unsatisfying assignments. So
the ability to compute a partition function —or even sample from the distribution—would
yield a satisfying assignment with high probability.

The Metropolis-Hastings algorithm (named after its inventors) is a heuristic for solving
the sampling problem. It works in many real-life settings even though the general problem
is NP-hard. Define the following random walk on {0, 1}n. At every step the walk is at
some x ∈ {0, 1}n. (At the beginning use an arbitrary x.) At every step, toss a coin. If
it comes up heads, stay at x. (In other words, there is a self-loop of probability at least
1/2.) If the coin came up tails, then randomly pick a neighbor x′ of x. Move to x′ with

probability min 1, µ(x
′)

µ(x) . (In other words, if µ(x′) ≥ µ(x), definitely move. Otherwise move

with probability given by their ratio.)

claim: If all µ(x) > 0 then the stationary distribution of this Markov chain is exactly
µ(x)/N , the desired distribution
Proof: The markov chain defined by this random walk is ergodic since µ(x) > 0 implies it
is connected, and the self-loops imply it mixes. Thus it suffices to show that the (unique)
stationary distribution has the form µ(x)/K for some scale factor K, and then it follows
that K is the partition function. To do so it suffices to verify that such a distribution is
stationary, i.e., in one step the probability flowing out of a vertex equals its inflow. For any
x, lets L be the neighbors with a lower µ value and H be the neighbors with value at least
as high. Then the outflow of probability per step is

µ(x)

2K
(
∑
x′∈L

µ(x′)

µ(x)
+
∑
x′∈H

1),

whereas the inflow is
1

2
(
∑
x′∈L

µ(x′)

K
· 1 +

∑
x′∈H

µ(x′)

K

µ(x)

µ(x′)
),

and the two are the same. 2

0.3 Analysis of Mixing Time for General Markov Chains

We did not do this in class; this is extra reading for those who are interested.



8

In the class we only analysed random walks on d-regular graphs and showed that they
converge exponentially fast with rate given by the second largest eigenvalue of the transition
matrix. Here, we prove the same fact for general ergodic Markov chains.

Theorem 2
The following are necessary and sufficient conditions for ergodicity:

1. connectivity: ∀i, j : Mt(i, j) > 0 for some t.

2. aperiodicity: ∀i : gcd{t : Mt(i, j) > 0} = 1.

Remark 1 Clearly, these conditions are necessary. If the Markov chain is disconnected it
cannot have a unique stationary distribution —there is a different stationary distribution for
each connected component. Similarly, a bipartite graph does not have a unique distribution:
if the initial distribution places all probability on one side of the bipartite graph, then the
distribution at time t oscillates between the two sides depending on whether t is odd or
even. Note that in a bipartite graph gcd{t : Mt(i, j) > 0} ≥ 2. The sufficiency of these
conditions is proved using eigenvalue techniques (for inspiration see the analysis of mixing
time later on).

Both conditions are easily satisfied in practice. In particular, any Markov chain can be
made aperiodic by adding self-loops assigned probability 1/2.

Definition 4 An ergodic Markov chain is reversible if the stationary distribution π satisfies
for all i, j, πiPij = πjPji.

We need a lemma first.

Lemma 3
Let M be the transition matrix of an ergodic Markov chain with stationary distribution π
and eigenvalues λ1(= 1) ≥ λ2 ≥ . . . ≥ λn, corresponding to eigenvectors v1(= π), v2, . . . vn.
Then for any k ≥ 2,

vk~1 = 0.

Proof: We have vkM = λkvk. Mulitplying by ~1 and noting that M~1 = ~1, we get

vk~1 = λkvk~1.

Since the Markov chain is ergodic, λk 6= 1, so vk~1 = 0 as required. 2

We are now ready to prove the main result concerning the exponentially fast convergence
of a general ergodic Markov chain:

Theorem 4
In the setup of the lemma above, let λ = max {|λ2|, |λn|}. Then for any initial distribution
x, we have

||xM t − π||2 ≤ λt||x||2.
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Proof: Write x in terms of v1, v2, . . . , vn as

x = α1π +
n∑
i=2

αivi.

Multiplying the above equation by ~1, we get α1 = 1 (since x~1 = π~1 = 1). Therefore
xM t = π +

∑n
i=2 αiλ

t
ivi, and hence

||xM t − π||2 ≤ ||
n∑
i=2

αiλ
t
ivi||2 (1)

≤ λt
√
α2
2 + · · ·+ α2

n (2)

≤ λt||x||2, (3)

as needed. 2


