
COS 432 October 12, 2016
Information Security Assignment 2: Application Security

Assignment 2: Application Security

This project is due on Friday, October 28 at 6 p.m.. You will work in teams of two and submit
one project per team. Please find a partner as soon as possible. If you have trouble forming a team,
post to Piazza’s partner search forum.

The code and other answers your group submits must be entirely your own work. You may consult
with other students about the conceptualization of the project and the meaning of the questions, but
you must not look at any part of someone else’s solution or collaborate with anyone outside your
group. You may consult published references, provided that you appropriately cite them (e.g., with
program comments), as you would in an academic paper.

Solutions must be submitted electronically by one of the group members. Details on the submission
guideline are listed at the end of the document.

Introduction
This project will introduce you to control-flow hijacking vulnerabilities in application software. We
will provide a series of vulnerable programs and a virtual machine environment in which you will
develop exploits.

• Be able to identify and avoid buffer overflow vulnerabilities in native code.

• Understand the severity of buffer overflows and the necessity of standard defenses.

• Gain familiarity with machine architecture and assembly language.

Read this First
This project asks you to develop attacks and test them in a virtual machine you control. Attempting
the same kinds of attacks against others’ systems without authorization is prohibited by law and
university policies and may result in fines, expulsion, and jail time. You must not attack anyone
else’s system without authorization! Per the course ethics policy, you are required to respect the
privacy and property rights of others at all times, or else you will fail the course.

Setup
Buffer-overflow exploitation depends on specific details of the target system, so we are providing
an Ubuntu VM in which you should develop and test your attacks. We’ve also slightly tweaked the
configuration to disable security features that would complicate your work. We’ll use this precise
configuration to grade your submissions, so you must not use your own VM.

1. Download VirtualBox from https://www.virtualbox.org/ and install it on your com-
puter. VirtualBox runs on Windows, Linux, and Mac OS.

2. Get the VM file at https://www.cs.princeton.edu/~sa8/cos432/AppSec.ova. This
file is 1.4 GB, so we recommend downloading it from campus.

3. Launch VirtualBox and select File B Import Appliance to add the VM.

4. Start the VM. There is a user named ubuntu with password ubuntu.

5. Download https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/
targets.tar.gz from inside the VM. This file contains all of the programs you will exploit.

6. Decompress targets.tar.gz with tar xf targets.tar.gz

7. cd targets

8. Each group’s programs will be slightly different. Personalize the programs by running:
./setcookie netid
Use the netid of the person who will be submitting your team’s solution. Make sure the
netid is correct! If you are changing your cookie, make sure to make clean first and then
recompile!

9. sudo make (The password you’re prompted for is ubuntu.)

Resources and Guidelines
No Attack Tools! You must not use special-purpose tools meant for testing security or exploiting
vulnerabilities. You must complete the project using only general purpose tools, such as gdb.

Control Hijacking Before you begin this project, read "Smashing the Stack for Fun and Profit"
available at https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/stack_
smashing.pdf. It was published 20 years ago, so don’t expect all the low-level details to be com-
pletely compatible with modern systems. However, it is a classic paper on the topic of buffer
overflows and a great read for understanding variances of these attacks.

GDB You will make extensive use of the GDB debugger. Useful commands are “disassemble”,
“info reg”, “x”, and setting breakpoints. See the GDB help for details, and don’t be afraid to
experiment! This quick reference may also be useful:
https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf

2

https://www.virtualbox.org/
https://www.cs.princeton.edu/~sa8/cos432/AppSec.ova
https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/targets.tar.gz
https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/targets.tar.gz
https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/stack_smashing.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/stack_smashing.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf

x86 Assembly These are many good references for Intel assembly language, but note that this
project targets the 32-bit x86 ISA. The stack is organized differently in x86 and x86_64. If you are
reading any online documentation, ensure that it is based on the x86 architecture, not x86_64. Here
is one reference to the syntax that we are using:
https://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html#s3

Targets
The provided programs for this project are simple, short C programs with (mostly) clear security
vulnerabilities. We are going to refer to these vulnerable programs as "targets". We have provided
source code and a Makefile that compiles all the targets. Your solutions must work against these
targets as compiled and executed within the provided VM.

target0: Overwriting a variable on the stack
This program takes input from stdin and prints a message. Your job is to provide input that
makes it output: “Hi netid ! Your grade is A+.”. To accomplish this, your input will need
to overwrite another variable stored on the stack.
Here’s one approach you might take:

1. Examine target0.c. Where is the buffer overflow?

2. Start the debugger (gdb target0) and disassemble _main: (gdb) disas _main
Identify the function calls and the arguments passed to them.

3. Draw a picture of the stack. How are name[] and grade[] stored relative to each other?

4. How could a value read into name[] affect the value contained in grade[]? Test your
hypothesis by running ./target0 on the command line with different inputs.

What to submit Create a Python program named sol0.py that prints a line to be passed as input
to the target. Test your program with the command line:

python sol0.py | ./target0

Hint: In Python, you can write strings containing non-printable ASCII characters by using the
escape sequence “\xnn ”, where nn is a 2-digit hex value. To cause Python to repeat a character n
times, you can do: print "X"*n.

target1: Overwriting the return address
This program takes input from stdin and prints a message. Your job is to provide input that makes
it output: “Your grade is perfect.” Your input will need to overwrite the return address so
that the function vulnerable() transfers control to print_good_grade() when it returns.

3

https://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html#s3

1. Examine target1.c. Where is the buffer overflow?

2. Disassemble print_good_grade. What is its starting address?

3. Set a breakpoint at the beginning of vulnerable and run the program.
(gdb) break vulnerable
(gdb) run

4. Disassemble vulnerable and draw the stack. Where is input[] stored relative to %ebp?
How long an input would overwrite this value and the return address?

5. Examine the %esp and %ebp registers: (gdb) info reg

6. What are the current values of the saved frame pointer and return address from the stack
frame? You can examine two words of memory at %ebp using: (gdb) x/2wx $ebp

7. What should these values be in order to redirect control to the desired function?

What to submit Create a Python program named sol1.py that prints a line to be passed as input
to the target. Test your program with the command line:

python sol1.py | ./target1

When debugging your program, it may be helpful to view a hex dump of the output. Try this:
python sol1.py | hd

Remember that x86 is little endian. Use Python’s struct module to output little-endian values:
from struct import pack
print pack("<I", 0xDEADBEEF)

target2: Redirecting control to shellcode
The remaining targets are owned by the root user and have the suid bit set. Your goal is to cause
them to launch a shell, which will therefore have root privileges. This and later targets all take input
as command-line arguments rather than from stdin. Unless otherwise noted, you should use the
shellcode we have provided in shellcode.py. Successfully placing this shellcode in memory and
setting the instruction pointer to the beginning of the shellcode (e.g., by returning or jumping to it)
will open a shell.

1. Examine target2.c. Where is the buffer overflow?

2. Create a Python program named sol2.py that outputs the provided shellcode:
from shellcode import shellcode
print shellcode

3. Set up the target in GDB using the output of your program as its argument:
gdb --args ./target2 $(python sol2.py)

4

4. Set a breakpoint in vulnerable and start the target.

5. Disassemble vulnerable. Where does buf begin relative to %ebp? What’s the current value
of %ebp? What will be the starting address of the shellcode?

6. Identify the address after the call to strcpy and set a breakpoint there:
(gdb) break *addr
Continue the program until it reaches that breakpoint.
(gdb) cont

7. Examine the bytes of memory where you think the shellcode is to confirm your calculation:
(gdb) x/32bx 0xaddress

8. Disassemble the shellcode: (gdb) disas/r 0xaddress,+32
How does it work?

9. Modify your solution to overwrite the return address and cause it to jump to the beginning of
the shellcode.

What to submit Create a Python program named sol2.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target2 $(python sol2.py)

If you are successful, you will see a root shell prompt (#). Running whoami will output “root”.

If your program segfaults, you can examine the state at the time of the crash using GDB with the
core dump: gdb ./target2 core. The file core won’t be created if a file with the same name
already exists. Also, since the target runs as root, you will need to run it using sudo ./target2 in
order for the core dump to be created.

target3: Overwriting the return address indirectly
In this target, the programmer is using a safer function (strncpy) to copy the input string to a buffer.
Therefore, the buffer overflow exploit is restricted and cannot directly overwrite the return address.
However, this programmer has miscalculated the length of the buffer. Hopefully this will help you
to find another way to gain control. Your input should cause the provided shellcode to execute and
open a root shell.

What to submit Create a Python program named sol3.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target3 $(python sol3.py)

5

target4: Beyond strings
This target takes as its command-line argument the name of a data file it will read. The file format is
a 32-bit count followed by that many 32-bit integers. Create a data file that causes the provided
shellcode to execute and opens a root shell.

What to submit Create a Python program named sol4.py that outputs the contents of a data file
to be read by the target. Test your program with the command line:

python sol4.py > tmp; ./target4 tmp

target5: Bypassing DEP
This program resembles target2, but it has been compiled with data execution prevention (DEP)
enabled. DEP means that the processor will refuse to execute instructions stored on the stack. You
can overflow the stack and modify values like the return address, but you can’t jump to any shellcode
you inject. You need to find another way to run the command /bin/sh and open a root shell.

What to submit Create a Python program named sol5.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target5 $(python sol5.py)

For this target, it’s acceptable if the program segfaults after the root shell is closed.

target6: Variable stack position
When we constructed the previous targets, we ensured that the stack would be in the same position
every time the vulnerable function was called, but this is often not the case in real targets. In fact,
a defense called ASLR (address-space layout randomization) makes buffer overflows harder to
exploit by changing the position of the stack and other memory areas on each execution. This target
resembles target2, but the stack position is randomly offset by 0x10–0x110 bytes each time it
runs. You need to construct an input that always opens a root shell despite this randomization.

What to submit Create a Python program named sol6.py that prints a line to be used as the
command-line argument to the target. Your solution must not cause the program to print out
any error messages. Test your program with the command line:

./target6 $(python sol6.py)

6

Submission Checklist
Upload to this link the following files:

• partners.txt [One netid on each line]

• cookie [Generated by setcookie based on your netid.]

• sol0.py

• sol1.py

• sol2.py

• sol3.py

• sol4.py

• sol5.py

• sol6.py

• README

The README file should include a small explanation of your approach for every target.

Your files can make use of standard Python libraries and the provided shellcode.py, but they must
be otherwise self-contained. Do not submit any additional files. Be sure to test that your solutions
work correctly in the provided VM without installing any additional packages.

7

https://dropbox.cs.princeton.edu/COS432_F2016/HW2

