Multiview Reconstruction

COS 429: Computer Vision

Acknowledgments: T. Funkhouser,, S. Seitz

Multiview Stereo

• Given multiple images of the same object or scene, compute a representation of its 3D shape

Why More Than 2 Views?

- Choosing a good baseline is hard
 - Too short low accuracy
 - Too long matching becomes hard

Large Baseline

Small Baseline

Why More Than 2 Views?

• Ambiguity with 2 views

Why More Than 2 Views?

 Ambiguity with 2 views – disambiguated by additional view

Outline

- Image-centric approaches
 - Multibaseline stereo
 - Plane-sweep stereo
- Volume-centric approaches
 - Silhouette carving
 - Voxel coloring
 - Space carving
- Surface-centric approaches
 - Feature detection + expansion/filtering
 - Mesh refinement

Outline

- Image-centric approaches
 - Multibaseline stereo
 - Plane-sweep stereo
- Volume-centric approaches
 - Silhouette carving
 - Voxel coloring
 - Space carving
- Surface-centric approaches
 - Feature detection + expansion/filtering
 - Mesh refinement

Trinocular Stereo

- Straightforward approach: use third view to eliminate bad correspondences
 - Pick 2 views, find correspondences
 - For each matching pair, reconstruct 3D point
 - Project point into 3rd image
 - If can't find correspondence near predicted location, reject

Multibaseline Stereo

More generally, for N views ...

- Pick one reference view
- For each candidate depth
 - Compute sum of squared differences to all other views, assuming correct disparity for view
- Resolves ambiguities: only correct depths will "constructively interfere"

Multibaseline Stereo

Multibaseline Stereo

[Okutami & Kanade]

Multibaseline Stereo Results

Plane Sweep Stereo

Each plane defines a homography warping each input image into the reference view

Plane Sweep Stereo

For each pixel, select the depth that gives the lowest variance

Problems with these approaches

- Limited types of 3D surfaces
 - Have to pick a reference view
- No consideration for visibility
 - With many cameras / large baseline, occlusion becomes likely
 - Contributes incorrect values to error function

Reference View Problem

Visibility Problem

• For larger baselines, occlusion is common

Visibility Problem

• Which scene points are seen in which images?

Forward Visibility known scene Inverse Visibility known images

Snavely

Outline

- Image-centric approaches
 - Multibaseline stereo
 - Plane-sweep stereo
- Volume-centric approaches
 - Silhouette carving
 - Voxel coloring
 - Space carving
- Surface-centric approaches
 - Feature detection + expansion/filtering
 - Mesh refinement

Volume-Centric Multiview Approaches

- Compute photoconsistency at 3D points
- Typically use discretized volume (voxel grid)
- For each voxel, predict whether 3D point is on surface, or inside/outside object

- Find silhouettes in all images
- Exact version:
 - Back-project all silhouettes, find intersection

- Find silhouettes in all images
- Exact version:
 - Back-project all silhouettes, find intersection

- Discrete version:
 - Loop over all voxels in some volume
 - If projection into images lies inside all silhouettes, mark as occupied
 - Else mark as free

- Limit of silhouette carving is visual hull
- In general not the same as object
 - Can't recover "pits" in object
- Not the same as convex hull

- The visual hull is a good starting point for better algorithms (that consider photo-consistency)
 - Easy to compute (if segmentation is good!)
 - Tight outer boundary of the object
 - Parts of the visual hull (rims) already lie on the surface and are already photo-consistent

Voxel Coloring

- Basic idea:
 - Project each voxel into each image in which it is visible
 - If colors in images agree, mark voxel with color
 - Else, mark voxel as empty
- Agreement of colors based on comparing standard deviation of colors to threshold

Voxel Coloring and Occlusion

- Problem: which voxels are visible?
- Solution, part 1: constrain camera views
 - When a voxel is considered, necessary occlusion information must be available
 - Sweep occluders before occludees
 - Constrain camera positions to allow this sweep

Voxel Coloring Sweep Order

Voxel Coloring Camera Positions

Inward-looking Cameras above scene

Outward-looking Cameras inside scene

- Cameras oriented in many different directions
- Planar depth ordering does not apply

Layers radiate outwards from cameras

Layers radiate outwards from cameras

Voxel Coloring and Occlusion

- Solution, part 2: per-image mask of which pixels have been used
 - Each pixel only used once
 - Mask filled in as sweep progresses

Voxel Coloring Results

Selected Dinosaur Images

Selected Flower Images

- Calibrated Turntable
- 360° rotation (21 images)
Voxel Coloring Results

Dinosaur Reconstruction

72 K voxels colored 7.6 M voxels tested Flower Reconstruction 70 K voxels colored 7.6 M voxels tested

Voxel Coloring Results

- With texture: good results
- Without texture: regions tend to "bulge out"
 - Voxels colored at earliest time at which projection into images is consistent
 - Model good for re-rendering: image will look correct for viewpoints near the original ones

Limitations of Voxel Coloring

- A view-independent depth order may not exist
- Need more powerful general-case algorithms
 - Unconstrained camera positions
 - Unconstrained scene geometry/topology

Multi-Pass Plane Sweep

- Sweep planes in each of 6 principal directions
- Consider cameras on only one side of plane
- Repeat until convergence
 - Carved voxels stay carved
 - New voxels may be carved away on future passes

Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Space Carving Results: Hand

Input Image (1 of 100)

Views of Reconstruction

- Result: not necessarily correct scene
- Many scenes may be photoconsistent with the input images

Photo-consistency vs. silhouette-consistency

True Scene

Photo Hull

Outline

- Image-centric approaches
 - Multibaseline stereo
 - Plane-sweep stereo
- Volume-centric approaches
 - Silhouette carving
 - Voxel coloring
 - Space carving
- Surface-centric approaches
 - Feature detection + expansion/filtering
 - Mesh refinement

 Detect feature correspondences, and then expand/filter based on consistency in other views

One Input Features Correspondences Expansion Final Surface

1) Detect features, find correspondences

Furukawa

Structure from Motion

- "Limiting case" of multibaseline stereo
- Track features in a video sequence
- For *n* frames and *f* features, have $2 \cdot n \cdot f$ knowns, $6 \cdot n + 3 \cdot f$ unknowns
 - Can solve for feature positions and camera extrinsics

2) Construct seed patches

3b) Expand patches to neighbors

3a) Filter inconsistent patches

Patch-Based Results

Initial set of seed patches

Patch-Based Results

After filtering inconsistent patches

Furukawa

Mesh-Based Methods

- Optimize vertices of a 3D triangle mesh surface to maximize photoconsistency
 - Generate initial mesh(e.g., connecting patches)
 - Move vertices along normal direction to improve photoconsistency (e.g., NCC)

Patch + Mesh Results

Furukawa

Patch + Mesh Results

Multi-View Stereo from Internet Collections

[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007]

Law of Large Image Collections

206 Flickr images taken by 92 photographers

4 best neighboring views

reference view

Local view selection

• Automatically select neighboring views for each point in the image

• Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

• Automatically select neighboring views for each point in the image

• Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

• Automatically select neighboring views for each point in the image

• Desiderata: good matches AND good baselines

Results

160 images 60 photographers St. Peter 151 images 50 photographers Trevi Fountain 106 images 51 photographers

Notre Dame de Paris 653 images taken by 313photographers

Notre Dame de Paris

Venus de Milo 129 *Flickr* images taken by 98 photographers

Venus de Milo

Pisa Cathedral

56 *Flickr* images taken by 8 photographers

Pisa Cathedral

Pisa Cathedral

Accuracy compared to laser scanned model: 90% of points within 0.25% of ground truth

Summary

- Image-centric approaches
 - Multibaseline stereo
 - Plane-sweep stereo
- Voxel-centric approaches
 - Silhouette carving
 - Voxel coloring
 - Space carving
- Surface-centric approaches
 - Feature detection + expansion/filtering
 - Mesh refinement