3D Vision and Stereo

COS 429: Computer Vision

Acknowledgments: T. Funkhouser, K. Grauman, S. Lazebnik, S. Seitz, X. Ren
3D Perception

• Depth sensors: directly return 3D point locations
• Multiple images: figure out what 3D scenes are consistent with multiple views
• Single image?
 – Visual system uses a variety of cues to infer 3D
 – Can study these cues by seeing when they break…
3D Perception: Illusions
3D Perception: Illusions
3D Perception: Illusions
3D Perception: Illusions

Block & Yuker
3D Perception: Illusions
3D Perception: Illusions
3D Perception: Illusions
3D Perception: Conclusions

- Perspective is assumed
- Relative depth ordering
- Occlusion is important
- Local consistency
3D Perception: Stereo

- Experiments show that absolute depth estimation not very accurate
 - Low “relief” judged to be deeper than it is
- **Relative** depth estimation very accurate
 - Can judge which object is closer for stereo disparities of a few seconds of arc
3D Computer Vision

- Accurate (or not) shape reconstruction
- Some things easier to understand on 3D models than in 2D:
 - Occlusion
 - Variation with lighting (shading)
 - Variation with viewpoint
- As a result, some problems can become easier:
 - Segmentation
 - Recognition
3D Data Types

- Point Data
- Volumetric Data
- Surface Data
3D Data Types: Point Data

- “Point clouds”
- Advantage: simplest data type
- Disadvantage: no information on adjacency / connectivity
3D Data Types: Volumetric Data

- Regularly-spaced grid in (x,y,z): “voxels”
- For each grid cell, store
 - Occupancy (binary: occupied / empty)
 - Density
 - Other properties
- Popular in medical imaging
 - CAT scans
 - MRI
3D Data Types: Volumetric Data

• Advantages:
 – Can represent inside of object
 – Uniform sampling: simpler algorithms

• Disadvantages:
 – Lots of data
 – Wastes space if only storing a surface
 – Most “vision” sensors / algorithms return point or surface data
3D Data Types: Surface Data

- **Polyhedral**
 - Piecewise planar
 - Polygons connected together
 - Most popular: “triangle meshes”

- **Smooth**
 - Higher-order (quadratic, cubic, etc.) curves
 - Bézier patches, splines, NURBS, subdivision surfaces, etc.
 - See COS 426 for details…
3D Data Types: Surface Data

- Advantages:
 - Usually corresponds to what we see
 - Usually returned by vision sensors / algorithms

- Disadvantages:
 - How to find “surface” for translucent objects?
 - Parameterization often non-uniform
 - Non-topology-preserving algorithms difficult
$2^{\frac{1}{2}}$-D Data

- **Image**: stores an intensity / color along each of a set of regularly-spaced rays in space
- **Range image**: stores a **depth** along each of a set of regularly-spaced rays in space
- **Not a complete 3D description**: does not store objects occluded (from some viewpoint)
- **View-dependent scene description**
2½-D Data

- This is what most sensors / algorithms really return
- Advantages
 - Uniform parameterization
 - Adjacency / connectivity information
- Disadvantages
 - Does not represent entire object
 - View dependent
2½-D Data

- RGBD
- Range images
- Range surfaces
- Depth images
- Depth maps
- Height fields
- 2½-D images
- Surface profiles
- xyz maps
- ...

...
Range Acquisition Taxonomy

Range acquisition

- Contact
 - Mechanical (CMM, jointed arm)
 - Inertial (gyroscope, accelerometer)
 - Ultrasonic trackers
 - Magnetic trackers
- Transmissive
 - Industrial CT
 - Ultrasound
 - MRI
- Reflective
 - Non-optical
 - Radar
 - Sonar
 - Optical
Touch Probes

- Jointed arms with angular encoders
- Return position, orientation of tip

Faro Arm – Faro Technologies, Inc.
Range Acquisition Taxonomy

- Contact
 - Mechanical (CMM, jointed arm)
 - Inertial (gyroscope, accelerometer)
 - Ultrasonic trackers
 - Magnetic trackers

- Transmissive
 - Industrial CT
 - Ultrasound
 - MRI

- Reflective
 - Non-optical
 - Radar
 - Sonar
 - Optical
Range Acquisition Taxonomy

Optical methods

Passive

Active

Shape from X:
- stereo
- motion
- shading
- texture
- focus
- defocus

Active variants of passive methods
- Stereo w. projected texture
- Active depth from defocus
- Photometric stereo

Time of flight

Triangulation
Optical Range Acquisition Methods

• Advantages:
 – Non-contact
 – Safe
 – Usually inexpensive
 – Usually fast

• Disadvantages:
 – Sensitive to transparency
 – Confused by specularity and interreflection
 – Texture (helps some methods, hurts others)
Stereo

- Find feature in one image, search along epipolar line in other image for correspondence
Stereo

• Advantages:
 – Passive
 – Cheap hardware (2 cameras)
 – Easy to accommodate motion
 – Intuitive analogue to human vision

• Disadvantages:
 – Only acquire good data at “features”
 – Sparse, relatively noisy data (correspondence is hard)
 – Bad around silhouettes
 – Confused by non-diffuse surfaces

• Variant: multibaseline stereo to reduce ambiguity
Shape from Motion

- “Limiting case” of multibaseline stereo
- Track features in a video sequence
- For \(n \) frames and \(f \) features, have \(2 \cdot n \cdot f \) knowns, \(6 \cdot n + 3 \cdot f \) unknowns
Shape from Motion

• Advantages:
 – Feature tracking easier than correspondence in far-away views
 – Mathematically more stable (large baseline)

• Disadvantages:
 – Does not accommodate object motion
 – Still problems in areas of low texture, in non-diffuse regions, and around silhouettes
Shape from Shading

- Given: image of surface with known, constant reflectance under known point light
- Estimate normals, integrate to find surface
- Problem: ambiguity
Shape from Shading

• Advantages:
 – Single image
 – No correspondences
 – Analogue in human vision

• Disadvantages:
 – Mathematically unstable
 – Can’t have texture

• “Photometric stereo” (active method) is more practical than passive version
Shape from Texture

- Mathematically similar to shape from shading, but uses stretch and shrink of a (regular) texture
Shape from Texture

• Analogue to human vision
• Same disadvantages as shape from shading
Shape from Focus and Defocus

• Shape from focus: at which focus setting is a given image region sharpest?
• Shape from defocus: how out-of-focus is each image pixel or region?
• Passive versions rarely used
• Active depth from defocus can be made practical
Correspondence and Stereopsis

Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri]
Introduction

- **Disparity:**
 - How much each pixel is shifted between two images
 - Allows us to gain a strong sense of depth

- **Stereopsis:**
 - Ability to perceive depth from disparity

- **Goal:**
 - Design algorithms that mimic stereopsis
Stereo Vision

- Two parts
 - Binocular fusion of features observed by the eyes
 - Reconstruction of their three-dimensional preimage
Stereo Vision – Easy Case

- A single point being observed
 - The preimage can be found at the intersection of the rays from the focal points to the image points
Stereo Vision – Hard Case

- Many points being observed
 - Need some method to establish correspondences
Components of Stereo Vision Systems

- **Camera calibration**: next week
- **Image rectification**: simplifies the search for correspondences
- **Correspondence**: which item in the left image corresponds to which item in the right image
- **Reconstruction**: recovers 3-D information from the 2-D correspondences
Multi-Camera Geometry

- Epipolar geometry – relationship between observed positions of points in multiple cameras

Assume:
- 2 cameras
- Known intrinsics and extrinsics
Epipolar Geometry
Epipolar Geometry
Epipolar Geometry

- **C₁** and **C₂** are cameras.
- **p₁** and **p₂** are points in the scene.
- **Epipolar line** connects corresponding points in the two images.
- **Epipoles** are points at which the epipolar lines meet the image planes.
Epipolar Geometry

- Epipolar constraint: corresponding points must lie on conjugate epipolar lines
 - Search for correspondences becomes a 1-D problem
Image Rectification

- Warp images such that conjugate epipolar lines become collinear and parallel to u axis.
Disparity

- With rectified images, disparity is just (horizontal) displacement of corresponding features from one image to the other.
 - Disparity = 0 for distant points
 - Larger disparity for closer points
 - Depth of point proportional to 1/disparity
Correspondence

• Given an element in the left image, find the corresponding element in the right image

• Classes of methods
 – Correlation-based
 – Feature-based (saw these for image alignment!)
Correlation-Based Correspondence

• Input: rectified stereo pair and a point \((u,v)\) in the first image

• Method:
 – Consider window centered at \((u,v)\)
 – For each potential matching window centered at \((u+d,v)\) in the second image, compute matching score of correspondence
 – Set disparity to value of \(d\) giving highest score
Sum of Squared Differences

- Recall: SSD for image similarity

\[\psi(u, v) = -(u - v)^2 \]

- Negative sign so that higher values mean greater similarity
Normalized Cross-Correlation

- Normalize to eliminate brightness sensitivity:

\[\psi(u, v) = \frac{(u - \bar{u})(v - \bar{v})}{\sigma_u \sigma_v} \]

where

\[\bar{u} = \text{average}(u) \]
\[\sigma_u = \text{standard deviation}(u) \]

- Can help for non-diffuse scenes, hurts for perfectly diffuse ones
Window-Based Correlation

• For each pixel
 – For each disparity
 • For each pixel in window
 – Compute difference
 – Find disparity with minimum SSD
Reverse Order of Loops

• For each disparity
 – For each pixel
 • For each pixel in window
 – Compute difference

• Find disparity with minimum SSD at each pixel
Incremental Computation

- Given SSD of a window, at some disparity
Incremental Computation

- Want: SSD at next location
Incremental Computation

- Subtract contributions from leftmost column, add contributions from rightmost column
Selecting Window Size

- Small window: more detail, but more noise
- Large window: more robustness, less detail
- Example:
Selecting Window Size

3 pixel window

20 pixel window