3D Vision and Stereo

COS 429: Computer Vision

3D Perception

- Depth sensors: directly return 3D point locations
- Multiple images: figure out what 3D scenes are consistent with multiple views
- Single image?
 - Visual system uses a variety of cues to infer 3D
 - Can study these cues by seeing when they break...

3D Perception: Conclusions

- Perspective is assumed
- Relative depth ordering
- Occlusion is important
- Local consistency

3D Perception: Stereo

- Experiments show that absolute depth estimation not very accurate
 - Low "relief" judged to be deeper than it is
- Relative depth estimation very accurate
 - Can judge which object is closer for stereo disparities of a few seconds of arc

3D Computer Vision

- Accurate (or not) shape reconstruction
- Some things easier to understand on 3D models than in 2D:
 - Occlusion
 - Variation with lighting (shading)
 - Variation with viewpoint
- As a result, some problems can become easier:
 - Segmentation
 - Recognition

3D Data Types

- Point Data
- Volumetric Data
- Surface Data

3D Data Types: Point Data

- "Point clouds"
- Advantage: simplest data type
- Disadvantage: no information on adjacency / connectivity

3D Data Types: Volumetric Data

- Regularly-spaced grid in (x,y,z): "voxels"
- For each grid cell, store
 - Occupancy (binary: occupied / empty)
 - Density
 - Other properties
- Popular in medical imaging
 - CAT scans
 - MRI

3D Data Types: Volumetric Data

Advantages:

- Can represent inside of object
- Uniform sampling: simpler algorithms

Disadvantages:

- Lots of data
- Wastes space if only storing a surface
- Most "vision" sensors / algorithms return point or surface data

3D Data Types: Surface Data

Polyhedral

- Piecewise planar
- Polygons connected together
- Most popular: "triangle meshes"

Smooth

- Higher-order (quadratic, cubic, etc.) curves
- Bézier patches, splines, NURBS, subdivision surfaces, etc.
- See COS 426 for details...

3D Data Types: Surface Data

Advantages:

- Usually corresponds to what we see
- Usually returned by vision sensors / algorithms

Disadvantages:

- How to find "surface" for translucent objects?
- Parameterization often non-uniform
- Non-topology-preserving algorithms difficult

2½-D Data

- Image: stores an intensity / color along each of a set of regularly-spaced rays in space
- Range image: stores a depth along each of a set of regularly-spaced rays in space
- Not a complete 3D description: does not store objects occluded (from some viewpoint)
- View-dependent scene description

2½-D Data

- This is what most sensors / algorithms really return
- Advantages
 - Uniform parameterization
 - Adjacency / connectivity information
- Disadvantages
 - Does not represent entire object
 - View dependent

2½-D Data

- RGBD
- Range images
- Range surfaces
- Depth images
- Depth maps
- Height fields
- $2\frac{1}{2}$ -D images
- Surface profiles
- xyz maps
- •

Range Acquisition Taxonomy

Touch Probes

- Jointed arms with angular encoders
- Return position, orientation of tip

Faro Arm – Faro Technologies, Inc.

Range Acquisition Taxonomy

Range Acquisition Taxonomy

Optical Range Acquisition Methods

Advantages:

- Non-contact
- Safe
- Usually inexpensive
- Usually fast
- Disadvantages:
 - Sensitive to transparency
 - Confused by specularity and interreflection
 - Texture (helps some methods, hurts others)

Stereo

 Find feature in one image, search along epipolar line in other image for correspondence

Stereo

Advantages:

- Passive
- Cheap hardware (2 cameras)
- Easy to accommodate motion
- Intuitive analogue to human vision
- Disadvantages:
 - Only acquire good data at "features"
 - Sparse, relatively noisy data (correspondence is hard)
 - Bad around silhouettes
 - Confused by non-diffuse surfaces
- Variant: multibaseline stereo to reduce ambiguity

Shape from Motion

- "Limiting case" of multibaseline stereo
- Track features in a video sequence
- For *n* frames and *f* features, have $2 \cdot n \cdot f$ knowns, $6 \cdot n + 3 \cdot f$ unknowns

Shape from Motion

Advantages:

- Feature tracking easier than correspondence in far-away views
- Mathematically more stable (large baseline)
- Disadvantages:
 - Does not accommodate object motion
 - Still problems in areas of low texture, in non-diffuse regions, and around silhouettes

Shape from Shading

- Given: image of surface with known, constant reflectance under known point light
- Estimate normals, integrate to find surface
- Problem: ambiguity

Shape from Shading

- Advantages:
 - Single image
 - No correspondences
 - Analogue in human vision
- Disadvantages:
 - Mathematically unstable
 - Can't have texture
- "Photometric stereo" (active method) is more practical than passive version

Shape from Texture

• Mathematically similar to shape from shading, but uses stretch and shrink of a (regular) texture

Shape from Texture

- Analogue to human vision
- Same disadvantages as shape from shading

Shape from Focus and Defocus

- Shape from focus: at which focus setting is a given image region sharpest?
- Shape from defocus: how out-of-focus is each image pixel or region?
- Passive versions rarely used
- Active depth from defocus can be made practical

Correspondence and Stereopsis

Introduction

- Disparity:
 - How much each pixel is shifted between two images
 - Allows us to gain a strong sense of depth
- Stereopsis:
 - Ability to perceive depth from disparity
- Goal:
 - Design algorithms that mimic stereopsis

Stereo Vision

- Two parts
 - Binocular fusion of features observed by the eyes
 - Reconstruction of their three-dimensional preimage

Stereo Vision – Easy Case

- A single point being observed
 - The preimage can be found at the intersection of the rays from the focal points to the image points

Stereo Vision – Hard Case

- Many points being observed
 - Need some method to establish correspondences

Components of Stereo Vision Systems

- Camera calibration: next week
- Image rectification: simplifies the search for correspondences
- Correspondence: which item in the left image corresponds to which item in the right image
- Reconstruction: recovers 3-D information from the
 2-D correspondences

Multi-Camera Geometry

- Epipolar geometry relationship between observed positions of points in multiple cameras
- Assume:
 - 2 cameras
 - Known intrinsics and extrinsics

- Epipolar constraint: corresponding points must lie on conjugate epipolar lines
 - Search for correspondences becomes a 1-D problem

Image Rectification

 Warp images such that conjugate epipolar lines become collinear and parallel to u axis

Disparity

 With rectified images, disparity is just (horizontal) displacement of corresponding features from one image to the other

- Disparity = 0 for distant points
- Larger disparity for closer points
- Depth of point proportional to 1/disparity

Correspondence |

 Given an element in the left image, find the corresponding element in the right image

- Classes of methods
 - Correlation-based
 - Feature-based (saw these for image alignment!)

Correlation-Based Correspondence

- Input: rectified stereo pair and a point (u,v)
 in the first image
- Method:
 - Consider window centered at (u,v)
 - For each potential matching window centered at (u+d,v) in the second image, compute matching score of correspondence
 - Set disparity to value of d giving highest score

Sum of Squared Differences

Recall: SSD for image similarity

$$\psi(u,v) = -(u-v)^2$$

Negative sign so that higher values mean greater similarity

Normalized Cross-Correlation

Normalize to eliminate brightness sensitivity:

$$\psi(u,v) = \frac{(u-\overline{u})(v-\overline{v})}{\sigma_u \sigma_v}$$

where

$$\overline{u}$$
 = average(u)
 σ_u = standard deviation(u)

 Can help for non-diffuse scenes, hurts for perfectly diffuse ones

Window-Based Correlation

- For each pixel
 - For each disparity
 - For each pixel in window
 - Compute difference
 - Find disparity with minimum SSD

Reverse Order of Loops

- For each disparity
 - For each pixel
 - For each pixel in window
 - Compute difference
- Find disparity with minimum SSD at each pixel

Incremental Computation

Given SSD of a window, at some disparity

Incremental Computation

Want: SSD at next location

Incremental Computation

 Subtract contributions from leftmost column, add contributions from rightmost column

Image 1

Image 2

Selecting Window Size

- Small window: more detail, but more noise
- Large window: more robustness, less detail
- Example:

Selecting Window Size

3 pixel window

20 pixel window