
COS 429: Computer Vision

Lecture 12
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COS429 : 25.10.16 : Andras Ferencz

Slides credit: 
Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in 
turn adapted slides from Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others
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Motivation: Mobileye 
Camera-based Driver Assistance System 

Safety Application based on single
forward looking camera:

• Lane Detection
- Lane Departure Warning (LDW)
- Lane Keeping and Support
• Vehicle Detection
- Forward Collision Warning (FCW)
- Headway Monitoring and Warning
- Adaptive Cruise Control (ACC)
- Traffic Jam Assistant
- Emergency Braking (AEB)
• Pedestrian Detection
- Pedestrian Collision Warning (PCW)
- Pedestrian Emergency Braking

For Videos, visit 
www.mobileye.com

Mobileye
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Detect... Detect … Detect...  
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Or Track?  

Template

Once target has been located, and we “learn” what it looks like, should be easier to 
find in later frames... this is object tracking. 

Future Image Frame
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Approaches to Object Tracking   

Template

 Motion model (translation, translation+scale, affine, non-rigid, …)
 Image representation (gray/color pixel, edge image, histogram, HOG, 

wavelet...) 
 Distance metric  (L1, L2, normalized correlation, Chi-Squared, …)
 Method of optimization (gradient descent, naive search, combinatoric 

search...)
 What is tracked: whole object or selected features  
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Distance Metric 

• Goal: find       in image, 
assume translation only: no scale 
change or rotation,

using search (scanning the image)

• What is a good similarity or distance 
measure between two patches?
– Correlation
– Zero-mean correlation
– Sum Square Difference
– Normalized Cross Correlation
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Matching with filters

Goal: find       in image 
• Method 0: filter the image with eye patch

Input Filtered Image

What went wrong?

f = image
g = filter

response is stronger 
for higher intensity
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0-mean filter

• Goal: find       in image
• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

True detections

False 
detections

mean of f
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Sum of Squared error (L2)

• Goal: find      in image
• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image

True detections
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Sum of Squared error (L2)

• Goal: find       in image
• Method 2: SSD

Input 1- sqrt(SSD)

One potential downside of 
SSD:

Brightness Constancy 
Assumption 
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Normalized Cross-Correlation

• Goal: find       in image
• Method 3: Normalized cross-correlation

(= angle between zero-mean vectors)

Matlab: normxcorr2(template, im)

image patch mean Template mean 
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Normalized Cross-Correlation

• Goal: find       in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections
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Normalized Cross-Correlation

• Goal: find       in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections
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Search vs. Gradient Descent 

• Search:  
– Pros: Free choice of representation, distance metric; no 

need for good initial guess

– Cons: expensive when searching over complex motion 
models (scale, rotation, affine)

• If we have a good guess, can we do 
something cheaper?  
– Gradient Descent 
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Lucas-Kanade Object Tracker   

• Key assumptions:
• Brightness constancy:  projection of the same point looks the 

same in every frame (uses SSD as metric) 
• Small motion:  points do not move very far (from guessed 

location)
• Spatial coherence: points move in some coherent way 

(according to some parametric motion model) 
• For this example, assume whole object just translates in (u,v)
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• Brightness Constancy Equation:

I ( x,y,t )=I ( x+u,y+v,t+1)
Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

The brightness constancy constraint

I(x,y,t) I(x,y,t+1)

I x⋅u+ I y⋅v + I t≈ 0
Hence,

→ ∇ I⋅[ u v ]
T
+ I t=0

I ( x+ u , y + v , t + 1 )− I ( x , y , t )=+ I x⋅u + I y⋅v+ I t

I ( x+ u , y + v , t + 1 )≈ I ( x , y , t )+ I x⋅u+ I y⋅v + I t

Image derivative along x Difference over frames



17 : COS429 : L12 : 25.10.16 : Andras Ferencz Slide Credit:

How does this make sense?

• What do the static image gradients have to do 
with motion estimation?

∇ I⋅[u v ]
T
+I t=0
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Intuition in 1-D

X position

Intensity

Error: I
t

Frame t+1

Frame t

Ix

I x⋅u+I t≈0Solve for u in: u

I
t

Ix
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The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 
gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’ ) if 

•One equation (this is a scalar equation!), two unknowns (u,v)

∇ I⋅[u v ]
T
+I t=0

∇ I⋅[u' v' ]
T
=0

Can we use this equation to recover image motion (u,v) at 
each pixel?
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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The aperture problem

Perceived motion
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The aperture problem

Actual motion
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Solving the ambiguity…

• Spatial coherence constraint: solve for many pixels and 
assume they all have the same motion

• In our case, if the object fits in a 5x5 pixel patch, this gives us 25 equations:

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.
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• Least squares problem:

Solving the  ambiguity…
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Matching patches across images

• Over-constrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Dealing with larger movements: Iterative 
refinement

1. Initialize (x’,y’) = (x,y)
2. Compute (u,v) by

1. Shift window by (u, v): x’=x’+u; y’=y’+v;
2. Recalculate It

3. Repeat steps 2-4 until small change
• Use interpolation to warp by subpixel values

2nd moment matrix for feature 
patch in first image displacement

It = I(x’, y’, t+1) - I(x, y, t) 

Original (x,y) 
position
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Schematic of Lucas-Kanade

[Baker & Matthews, 2003]
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Dealing with larger movements

• How to deal with cases where the initial 
guess is not within a few pixels of the 
solution? 
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image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Dealing with larger movements: coarse-to-fine registration

run iterative L-K

run iterative L-K

upsample

.

.

.
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image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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Summary

• L-K works well when:
– Have a good initial guess

– L2 (SSD) is a good metric

– Can handle more degrees of freedom in motion model 
(scale, rotation, affine, etc.), which are too expensive for 
search

• But has problems with:

– Changes in brightness

–  … 
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LK Problem: Change in Brightness

Possible Solutions:
● Subtract mean intensity (based on current estimate before iteration)
● Transform gray values into some features that are not effected by 

brightness
● Any filter that is zero-mean
● Example: vertical, horizontal edge filters
● Example: Non-parametric filters (Rank & Census Transforms)  
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More Problems

• Outliers: bright strong features that are wrong

• Complex, high dimensional, or non-rigid motion 
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Feature Tracking

• Similar to feature matching, but track instead of match:
– Track small, good features using translation only (u,v)
– Use RANSAC to solve more complex motion model

(Scale, Rotation, Similarity, Affine, Homography, ... 
                                     Articulated, non-rigid) 
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Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

When is this solvable?  I.e., what are good points to 
track?

• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned
–   1/  2 should not be too large ( 1 = larger eigenvalue)

Recall: This is the Harris Corner Detector! 
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Low-texture region

– gradients have small magnitude
– small1, small 2
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Edge

– gradients very large or very small
– large1, small 2
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High-texture region

– gradients are different, large magnitudes
– large1, large 2
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Feature Point tracking
• Find a good point to track (harris corner)
• Track small patches (5x5 to 31x31) (e.g. using 

Lucas-Kanade)
• For rigid objects with affine motion: solve motion 

model parameters by robust estimation (RANSAC)

[Kanade, Lucas,Tamasi]
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Implementation issues
• Window size

– Small window more sensitive to noise and may miss larger 
motions (without pyramid)

– Large window more likely to cross an occlusion boundary 
(and it’s slower)

– 15x15 to 31x31 seems typical

• Weighting the window
– Common to apply weights so that center matters more 

(e.g., with Gaussian)
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Dense Motion field
• The motion field is the projection of the 3D 

scene motion into the image

What would the motion field of a non-rotating ball moving towards the camera look like?
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Optical flow
• Definition: optical flow is the apparent motion 

of brightness patterns in the image
• Ideally, optical flow would be the same as the 

motion field
• Have to be careful: apparent motion can be 

caused by lighting changes without any actual 
motion
– Think of a uniform rotating sphere under fixed 

lighting vs. a stationary sphere under moving 
illumination
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Lucas-Kanade Optical Flow
• Same as Lucas-Kanade feature tracking, but 

densely for each pixel
– As we saw, works better for textured pixels

• Operations can be done one frame at a time, 
rather than pixel by pixel
– Efficient
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Example

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Multi-resolution registration

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Errors in Lucas-Kanade
• The motion is large

– Possible Fix: Keypoint matching, coarse search, 
multiresolution

• A point does not move like its neighbors
– Possible Fix: Region-based matching

• Brightness constancy does not hold
– Possible Fix: Gradient constancy
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