COS 429: Computer Vision

Acknowledgment: slides from Antonio Torralba, Kristen Grauman, Jitendra Malik, Alyosha Efros, and Tom Funkhouser

What is a texture?

Torralba

What is a texture?

Torralba

What is a texture?

- Texture: stochastic pattern that is stationary ("looks the same" at all locations)
- May be structured or random

Wei & Levoy

Stochastic Stationary

Stochastic Stationary

Goal

- Computational representation of texture
 - Textures generated by same stationary stochastic process have same representation
 - Perceptually similar textures have similar representations

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

http://animals.nationalgeographic.com/

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

Texture Representation?

- What makes a good texture representation?
 - Textures generated by same stationary stochastic process have same representation
 - Perceptually similar textures have similar representations

Approaches

- Statistics of filter banks
- Textons
- Markov Random Fields

Approaches

- Statistics of filter banks
- Textons
- Markov Random Fields

Filter-Based Texture Representation

 Research suggests that the human visual system performs local spatial frequency analysis (Gabor filters)

> J. J. Kulikowski, S. Marcelja, and P. Bishop. Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. *Biol. Cybern*, 43:187-198, 1982.

Texture Representation

- Analyze textures based on the responses of linear filters
 - Use filters that look like patterns(spots, edges, bars, ...)
 - Compute magnitudes of filter responses
- Represent textures with statistics of filter responses within local windows
 - Histogram of feature responses for all pixels in window

original image

derivative filter
responses, squared

	<u>mean</u> <u>d/dx</u> <u>value</u>	<u>mean</u> <u>d/dy</u> <u>value</u>
Win. #1	4	10
	•	

statistics to summarize patterns in small windows

original image

derivative	e filter
responses, s	squared

	<u>mean</u> <u>d/dx</u> <u>value</u>	<u>mean</u> <u>d/dy</u> <u>value</u>
Win. #1	4	10
Win.#2	18	7
	•	

statistics to summarize patterns in small windows

original image

derivative filter	
responses, square	d

	<u>mean</u> <u>d/dx</u> <u>value</u>	<u>mean</u> <u>d/dy</u> <u>value</u>
Win. #1	4	10
Win <mark>:</mark> #2	18	7
Win.#9	20	20
	•	

statistics to summarize patterns in small windows

statistics to summarize patterns in small windows

statistics to summarize patterns in small windows

Filter Banks

- Previous example used two filters, resulting in 2-dimensional feature vector
 - x and y derivatives revealed local structure
- Filter bank: many filters
 - Higher-dimensional feature space
 - Distance still related to similarity of local structure

Filter banks

- What filters to put in the bank?
 - Combination of different scales, orientations, patterns

You Try: Can you match the texture to the response?

Filter Bank Texture Representation

- Pass image through filter bank
- Analysis: Compile statistics of filter outputs
 - Mean
 - Mean + variance
 - Histogram
- Synthesis:
 - Start with random noise image
 - Adjust histograms to match original image
 - Re-synthesize image from filter outputs

Histogram Equalization

• Given: two histograms of intensity H_1 and H_2

 Goal: function that remaps intensities to make new histogram H₁['] equal H₂

Histogram Equalization

1. Compute CDFs (integrals) of histograms

2. For each intensity, map through CDF 1 then look up inverse in CDF 2

Application: Texture Synthesis

Original Texture

Synthesized Texture

Heeger and Bergen

Application: Retrieval

 Retrieve similar images based on texture

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. *International Journal of Computer Vision*, 40(2):99-121, November 2000,

Approaches

- Statistics of filter banks
- Textons
- Markov Random Fields

- Elements ("textons") either identical or come from some statistical distribution
- Can analyze in natural images

Olhausen & Field

Clustering Textons

- Output of bank of *n* filters can be thought of as vector in *n*-dimensional space
- Can *cluster* these vectors using *k*-means [Malik et al.]
- Result: dictionary of most common textures

Clustering Textons

Image

Clustered Textons

Texton to Pixel Mapping

Using Texture in Segmentation

- Compute histogram of how many times each of the *k* clusters occurs in a neighborhood
- Define similarity of histograms h_i and h_j using χ^2

$$\chi^{2} = \frac{1}{2} \sum_{k} \frac{\left(h_{i}(k) - h_{j}(k)\right)^{2}}{h_{i}(k) + h_{j}(k)}$$

• Different histograms \rightarrow separate regions

Application: Segmentation

Malik

Approaches

- Statistics of filter banks
- Textons
- Markov Random Fields

Markov Random Fields

- Different way of thinking about textures
- Premise: probability distribution of a pixel depends on values of neighbors
- Probability the same throughout image
 - Extension of Markov chains

Motivation from Language

- Shannon (1948) proposed a way to synthesize new text using N-grams
 - Use a large text to compute probability distributions of each letter given N–1 previous letters
 - Starting from a seed repeatedly sample the conditional probabilities to generate new letters
 - Can do this with image patches!

Texture Synthesis Based on MRF

- For each pixel in destination:
 - Take already-synthesized neighbors
 - Find closest match in original texture
 - Copy pixel to destination
- Efros & Leung 1999
 - Speedup by Wei & Levoy 2000
 - Extension to copying whole blocks by Efros & Freeman 2001

Wei & Levoy

 Compute output pixels in scanline order (top-to-bottom, left-to-right)

output image

 Find candidate pixels based on similarities of pixel features in neighborhoods

 Similarities of pixel neighborhoods can be computed with squared differences (SSD) of pixel colors and/or filter bank responses

- For each pixel p:
 - Find the best matching K windows from the input image
 - Pick one matching window at random
 - Assign p to be the center pixel of that window

Synthesis Results

Synthesis Results

Efros

Synthesis Results: Homage to Shannon

r Dick Gephardt was fai rful riff on the looming : nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system h g with this latest tanger

thaim. them ."Whephartfe lartifelintomimen el ck Clirticout omaim thartfelins.f out |s aneitc the ry onst wartfe lck Gephtoomimeationl sigab Chiooufit Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Włeontongal s k Cirtioouirtfepe ong pme abegal fartfenstemem itiensteneltorydt telemephinsverdt was agemer. ff ons artientont Cling peme as rtfe atith, "Boui s hal s fartfelt sig pedril dt ske abounutie aboutioo tfeonewwas your aboronthardt thatins fain, ped, ains, them, pabout wasy arfuut countly d, In A h ole emthrängboomme agas fa bontinsyst Clinut : ory about continst Clipeopinst Cloke agatiff out (stome minemen fly ardt beoraboul n, thenly as t G cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbaut cout congagal comininga: mifmst Clivy abon al coounthalemungairt tf oun Whe looorystan loontieph. intly on, theoplegatick (iul fatiesontly atie Diontiomf wal s f thegàe ener nthahgat's enenhimas fan, "intchthory abons y

Hole Filling

- Fill pixels in "onion skin" order
 - Within each "layer", pixels with most neighbors are synthesized first
 - Normalize error by the number of known pixels
 - If no close match can be found, the pixel is not synthesized until the end

Hole Filling

Extrapolation

