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Review: Typical Components

 Hypothesis generation
 Sliding window, Segmentation,
feature point detection, random, search

* Encoding of (local) image data o
« Colors, Edges, Corners, Histogram of Oriented

Gradients, Wavelets, Convolution Filters

MOUT

* Relationship of different parts to each other ‘ f
 Blur or histogram, Tree/Star, Pairwise/Covariance

* Learning from labeled examples P

« Selecting representative examples (templates),
Clustering, Building a cascade

» Classifiers: Bayes, Logistic regression, SVM, I

Decision Trees, AdaBoost, ... Py

« Generative vs. Discriminative

Exemplar Summary
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class densities

« Verification - removing redundant, overlaping,
incompatible examples
* Non-Max Suppression, context priors,
geometry
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Classifiers: Decision Trees

Given (weighted) labeled examples:

« Select best single feature & A o
threshold that separates classes
 For each branch, recurse X X
« Stop when
« some depth is reached X © X X
* Branch is (close to) single-class X
» too few examples left in branch o .
° X
o o
o
o
X2

x1




Ensemble Methods: Boosting

Discrete AdaBoost(Freund & Schapire 19965)
1. Start with weights w; = 1/N, i=1,... N,

2. Repeat frm=1,2,..., M:

(a) Fit the clasifier fi,(z) € {=1,1} wime weights u; on the training data.
(b) Compute erty, = Ey[lye ol m =log((1 = erty, ) ferry, )
(€) Set w; ¢ wyexplen - Lyzp iz, 1= L2,... N, and renotmalize so that } . w; = 1.

3. Output the classifier sign[CM_ e fin ()]




Boosted Decision Trees

No
Many Long
Lines?
Yes No

Very High
Vanishing
Point?

Ye

e
Yes

F @
Ground Vertical Sky P(label | good segment, data)




R ——————————
Review: Typical Components

 Hypothesis generation
 Sliding window, Segmentation,
feature point detection, random, search

* Encoding of (local) image data o
« Colors, Edges, Corners, Histogram of Oriented

Gradients, Wavelets, Convolution Filters

MOUT

* Relationship of different parts to each other ‘ f
 Blur or histogram, Tree/Star, Pairwise/Covariance

* Learning from labeled examples P

« Selecting representative examples (templates),
Clustering, Building a cascade

» Classifiers: Bayes, Logistic regression, SVM, I

Decision Trees, AdaBoost, ... Py

« Generative vs. Discriminative

Exemplar Summary

==

PC,) PC)

@
o
=2} =

class densities

« Verification - removing redundant, overlaping,
incompatible examples
* Non-Max Suppression, context priors,
geometry
6: COS429:1.9:13.10.16 : Andras Ferencz Slide Credit;

PGIC)

N
posterior ;gobabilities
»

_‘
I
e

o
[N}

OO

02 04 06 08

P

02 04 06 08 B



Discriminative vs. Generative Classifiers

Training classifiers involves estimating f: X = Y, or P(Y|X) “Y given X”

Discriminative Classification: Generative Classification:
Find the boundary between classes Model each class & see which fits better
1. Assume some functional form 1.Assume some functional form for P(X|Y),
for P(Y|X) P(X)

2. Estimate parameters of P(X|Y), P(X)
directly from training data
3.Use Bayes rule to calculate P(Y|X= x)

2. Estimate parameters of P(Y|X)
directly from training data

Discriminative model Generative model
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Bayesian Classification (Generative Model)

Katydids
T
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Abdomen Length




Bayesian Classification

With a lot of data, we can build a histogram. Let us
just build one for “Antenna Length™ for now...
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Bayesian Classification

We can leave the
histograms as they are,
Or We can summarize
them with two normal
distributions.

Let us us two normal
distributions for ease
of visualization in the
following slides. ..
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Bayesian Classification

* We want to classify an insect we have found. Its antennae are 3 units long.
How can we classify it?

* We can just ask ourselves, give the distributions of antennae lengths we have
seen, 1s it more probable that our insect is a Grasshopper or a Katydid.
* There is a formal way to discuss the most probable classification...

p(c:| d) = probability of class ¢, given that we have observed d

) —»

Antennae length is 3
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Bayesian Classification

p(c. | d) = probability of class ¢, given that we have observed d

P(Grasshopper | 3)=10/(10 + 2) =0.833
P(Katydid | 3 ) =2/(10 + 2) =0.166

10

2

e

3
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Bayesian Classification

* Bayesian classifiers use Bayes theorem, which says
p(c;1d) =p(dlc;) plc;)
p(d)

. p({:jl d) = probability of instance d being in class C;s

¢« p(dl cj) = probability of generating instance d given class Cjs

. p(cj} = probability of occurrence of class Cj»

* p(d) = probability of instance d occurring



Nailve Bayes Classification

« To simplify the task, naive Bayesian classifiers assume
attributes have independent distributions, and thereby estimate

p(dlc,) = p(d,lc;) * p(d,lc,) * ... * p(d,lc;)

[ w

The probability of
class ¢; generating
instance d, equals. ...

The probability of class ¢,

generating the observed

value for feature 1,

multiplied by..
The probability of class c;
generating the observed
value for feature 2,
multiplied by..



Nailve Bayes, Odds ratio, and Logit

Assuming independence of features d1 and d2, we can classify between 2 classes
{C1, C2}, by compute the ratio:

r(c,d,,d,) _ P(d,|C,)P(d,|C,)P(C,)
p(c,d,.d,) P(d,|C,)P(d,C,)P(C,)

<1

This is called the Odds ratio.

It is often easier to take the log of this, called the Log Odds or Logit:

O P(Clldl’dZ)
g P(C2|d1’d2)

15:C0OS429 :1.9:13.10.16 : Andras Ferencz Slide Credit:



Nalve Bayes

T

Suppose I observe an
insect with a wingbeat
frequency of 420 at
11:00am

What is it?

0 | 12 24
Midnight Moon Midnight




Nalve Bayes

Naive Bayes with Gaussian densities have piecewise quadratic decision boundary.

/ Grasshoppers o,

e ., i

/.—-‘mis ‘

Adapied from slide by Ricardo Gutierrez-Osuna



Graphical Models

Independence assumption of Naive Bayes assumes independence of
Naive Bayes is the simplest dl1,d2,... conditioned on the class c

assumption. Often much more
complicated relationships needs
to be represented.

A good way to do this is a
Graphical Model
(aka. Byesian Network)

‘P(d le;) ‘ p(d,lc;) ‘ p(d,lc;)

Animal | Mass>10,, Animal | Color Animal
Cat Yes 0.15 Cat Black 0.33 Cat
Mo 0.85 White 0.23
Dog Yes 0.91 Brown .44 Dog
Mo 009 Dhorg Black 0.97
Pig Yes 0.99 White 0.03 Pig
Mo 0.01 Brown 0.9
Pig Black 0.04
White 0.01




Graphical Models

More complicated models

consider the dependence
between different variables. E

hooac
Yellow-
stained
Fingers

Smoking

Levels of
Protein X

Medicine Y

Lung
Cancer

Fatigue Cough




Discriminative vs. Generative Classifiers

Training classifiers involves estimating f: X = Y, or P(Y|X) “Y given X”

Discriminative Classification: Generative Classification:
Find the boundary between classes Model each class & see which fits better
1. Assume some functional form 1.Assume some functional form for P(X|Y),
for P(Y|X) P(X)

2. Estimate parameters of P(X|Y), P(X)
directly from training data
3.Use Bayes rule to calculate P(Y|X= x)

2. Estimate parameters of P(Y|X)
directly from training data

Discriminative model Generative model
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Discriminative vs. Generative Classifiers

Discriminative:

+ Model directly what you care about

+ With many examples usually more accurate

+ Often faster to evaluate, can scale well to many examples & classes
Generative:

+ Allows more flexibility to model relationships between variables

+ Can handle compositionality, missing & occluded parts (more “object oriented”)
+ Often needs less labeled examples

pima [cortinuaus) sdult (confinuous) basion (gredict if > median prics, conlifuous)
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Implicit shape models

* Visual codebook is used to index votes for
object position

visual codeword with
displacement vectors

training image annotated with object localization info

B. Leibe, A. Leonardis, and B. Schiele,
Combined Object Categorization and Segmentation with an Implicit Shape Model,

ECCV Workshoi on Statistical Learnini in Comiuter Vision 2004



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Implicit shape models: Training

1. Build codebook of patches around extracted
interest points using clustering
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Implicit shape models: Testing

1. Given test image, extract patches, match to
codebook entry
2. Cast votes for possible positions of object center

Search for maxima in voting space

4. Extract weighted segmentation mask based on
stored masks for the codebook occurrences

w

Original Image ; Matched Codebook Probabilistic
S Interest Points . i
" _ Entries Voting
. s w.t-l. | L -
— S '--lo'_,ﬂ — ™
— & . n o : L]
.ol o 8
Voting Space
Segmentation H —_—— L = .. (continuous)
L e gk Ty R P
™~ s '
Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum .

28 : COd42Y : LY : 13.1V0.1b ; AndAras rerencz Slide Credit:



Results on Cows

T

Original image




Example: Results on Cows
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Example: Results on Cows

Matched patches




Example: Results on Cows

Probabilistic votes
32 : COS429 : L9 : 13.10.16 : Andras Ferencz S Graef o 18 Lelie




Example: Results on Cows

Hypothesis 1




Example: Results on Cows

Hypothesis 1




Example: Results on Cows

Hypothesis 3




Additional examples

B. Leibe, A. Leonardis, and B. Schiele,
Robust Object Detection with Interleaved Categorization and Segmentation, IJCV

36 : 60@4@ By 2?9%??6 .Z%)lﬁras Ferencz Slide Credit:


http://www.mmp.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf

Generative part-based models
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R. Fergus, P. Perona and A. Zisserman,
Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR 2003



http://cs.nyu.edu/~fergus/papers/fergus03.pdf

Probabilistic model

P(image|object) =P(appearance, shape | object)

SN

Part Part
descriptors locations

Candidate parts




Probabilistic model

P(image|object) =P(appearance, shape | object)

=—max h‘P(appeamnce | h, object 1 p(shape| h,object) p(h|object)

Distribution
over patch
descriptors

High-dimensional appearance space




.
Probabilistic model

P(image|object) =P(appearance, shape | object)
=max, P(appearance| h,object) p(shape| h,object) p(h|object)

h: assignment of features to parts




.
Probabilistic model

P(image|object) =P(appearance, shape | object)

=max, P(appearance| h,object 1 p(shape| h,object )lp(h | object)

°
- Distribution
e © -

. ¢ * | over joint

MRY 1 o 1V t it

"R + @/ | partpositions

101 =

b I

) )

!

2D image space



Results: Faces

Face
shape
model

Recognition
results

Face zhaps model

[ +ojs2

REFRERDAF
FFFFFFFrrr
wlalelwlelslslal 1
TosveTeT O
CELEEELELE
1]11111111

Patch
appearance
model




Results: Motorbikes and airplanes

Molorblks shape model
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Pictorial structures

* Set of parts (oriented rectangles)
connected by edges

* Recognition problem: find the
most probable part layout /,, ...,/

In the image

P. Felzenszwalb and D. Huttenlocher, Pictorial Structures for Object Recognition,



http://people.cs.uchicago.edu/~pff/papers/blobrecJ.pdf

Pictorial structures

* MAP formulation: maximize posterior

P(l,,...,1, | Tm) oc P(Im | 1,,...,L ) P(l, ...,1,) HP(Im(l))HP(lll)

i,jEE
Appearance Geometry

* Energy-based formulation: minimize minus the log of
probability:

(ysesl,) Zm <l>+2d,,<ll,z )

Matchlng Deformatlon




Deformable Parts Model

Template
Visualization

P. Felzenszwalb,
R. Girshick,

D. McAllester,
D. Ramanan

root filters part filters deformation  «Qpject Detection with Discriminatively
coarse resolution  finer resolution models Trained Part Based Models”
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So many options... How to choose?

Hypothesis generation
 Sliding window, Segmentation,
feature point detection, random, search

RIGHT
EDGE

LEFT
EDGE

Encoding of (local) image data
« Colors, Edges, Corners, Histogram of Oriented
Gradients, Wavelets, Convolution Filters

MOUT

Relationship of different parts to each other
 Blur or histogram, Tree/Star, Pairwise/Covariance

Learning from labeled examples P

« Selecting representative examples (templates),
Clustering, Building a cascade

» Classifiers: Bayes, Logistic regression, SVM, I
Decision Trees, AdaBoost, ... Py

« Generative vs. Discriminative

Exemplar Summary
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class densities

Verification - removing redundant, overlaping,
incompatible examples
* Non-Max Suppression, context priors,
geometry
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R
Train vs. Test Accuracy

Test Set

Optimum Model Complexilty

Error

Training Set

-

Model Complexity



e
Generalization

* Components of generalization error

- Bias: how much the average model over all training sets differ from
the true model?

* Error due to inaccurate assumptions/simplifications made by the
model

- Variance: how much models estimated from different training sets
differ from each other
* Underfitting: model is too “simple” to represent all the
relevant class characteristics
— High bias and low variance
— High training error and high test error

* Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
- Low bias and high variance
— Low training error and high test error

49 : COS429 :1.9:13.10.16 : Andras Ferencz Slide Credit:



Bias-Variance Trade-off

vy, Sample? * Models with too few
./ parameters are inaccurate
N oS because of a large bias
) (not enough flexibility).

Models with too many
parameters are inaccurate
because of a large
variance (too much
sensitivity to the sample).




Bias-Variance Trade-off

E(MSE) = noise? + bias? + variance

/7 w v\
\ Error due to

Unavoidable Error due to variance of training
error incorrect samples
assumptions

See the following for explanations of bias-variance (also Bishop’s “Neural
Networks” book):
*http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf


http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

...
Cross Validation

Try out what hyperparameters work best on test set.

train data test data




...
Cross Validation

Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

train data test data




...
Cross Validation

train data test data

'
fold 1 fold 2 fold 3 fold 4 fold5 | testdata

T

use to tune hyperparameters




...
Cross Validation

train data test data

'
fold 1 fold 2 fold 3 fold 4 fold5 | testdata

N

Cross-validation

cycle through the choice of which fold
is the validation fold, average results.




So...

* No classifier is inherently
better than any other: you
need to make assumptions

to generalize @f/#‘ |

WY, (;Eé‘ﬁnnnStnck:curh

e
» Three kinds of error l “ \ >

- Inherent: unavoidable
- Bias: due to over- e
simplifications

- Variance: due to inability
to perfectly estimate
parameters from limited data

56 : COS429 :1.9:13.10.16 : Andras Ferencz Slide Credit:



...
What to remember about classifiers

Machine learning algorithms are tools, not
dogmas

* Try simple classifiers first

* Better to have smart features and simple
classifiers than simple features and smart
classifiers

* Use increasingly powerful classifiers with
more training data (bias-variance tradeoff)

57 : COS429 : 1.9 : 13.10.16 : Andras Ferencz Slide Credit:



How to reduce variance?

* Choose a simpler classifier

* Reqularize the parameters

* Get more training data

58 : COS429 :1.9:13.10.16 : Andras Ferencz Slide Credit:
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