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Review: Typical Components 
● Hypothesis generation

● Sliding window, Segmentation, 
feature point detection, random, search 

● Encoding of (local) image data
● Colors, Edges, Corners, Histogram of Oriented 

Gradients, Wavelets, Convolution Filters

● Relationship of different parts to each other
● Blur or histogram, Tree/Star, Pairwise/Covariance   

● Learning from labeled examples
● Selecting representative examples (templates), 

Clustering, Building a cascade 
● Classifiers: Bayes, Logistic regression, SVM, 

Decision Trees, AdaBoost, ...  
● Generative vs. Discriminative

● Verification - removing redundant, overlaping,  
incompatible examples

● Non-Max Suppression, context priors, 
geometry     

Exemplar Summary
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Classifiers: Decision Trees
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Given (weighted) labeled examples:
● Select best single feature & 

threshold that separates classes
● For each branch, recurse
● Stop when

● some depth is reached
● Branch is (close to) single-class
● too few examples left in branch  
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Ensemble Methods: Boosting

figure from Friedman et al. 2000
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Boosted Decision Trees 
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Review: Typical Components 
● Hypothesis generation

● Sliding window, Segmentation, 
feature point detection, random, search 

● Encoding of (local) image data
● Colors, Edges, Corners, Histogram of Oriented 

Gradients, Wavelets, Convolution Filters

● Relationship of different parts to each other
● Blur or histogram, Tree/Star, Pairwise/Covariance   

● Learning from labeled examples
● Selecting representative examples (templates), 

Clustering, Building a cascade 
● Classifiers: Bayes, Logistic regression, SVM, 

Decision Trees, AdaBoost, ...  
● Generative vs. Discriminative

● Verification - removing redundant, overlaping,  
incompatible examples

● Non-Max Suppression, context priors, 
geometry     

Exemplar Summary
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Discriminative vs. Generative Classifiers

Discriminative Classification:
Find the boundary between classes

1. Assume some functional form 
for P(Y|X)

2. Estimate parameters of P(Y|X) 
directly from training data

Training classifiers involves estimating f: X  Y, or P(Y|X) “Y given X”

Generative Classification:
Model each class & see which fits better 

1.Assume some functional form for P(X|Y), 
P(X)

2.Estimate parameters of P(X|Y), P(X) 
directly from training data

3.Use Bayes rule to calculate P(Y|X= xi)
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Bayesian Classification (Generative Model)
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Bayesian Classification
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Bayesian Classification
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Bayesian Classification
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Bayesian Classification
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Bayesian Classification
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Naïve Bayes Classification
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Naïve Bayes, Odds ratio, and Logit

Assuming independence of features d1 and d2, we can classify between 2 classes 
{C1, C2}, by compute the ratio:

This is called the Odds ratio. 

It is often easier to take the log of this, called the Log Odds or Logit:

P(C1∣d1 ,d2)

P(C2∣d1 ,d2)
=

P(d1∣C1)P(d2∣C1)P (C1)

P(d1∣C2)P(d2∣C2)P (C2)
<1

log
P(C1∣d1 ,d2)

P(C2∣d1 ,d2)

=log
P (d1∣C1)

P (d1∣C2)
+log

P (d2∣C1)

P (d2∣C2)
+log

P (C1)

P (C2)
<0
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Naïve Bayes
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Naive Bayes with Gaussian densities have piecewise quadratic decision boundary. 

Naïve Bayes
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Graphical Models

Naive Bayes assumes independence of 
d1,d2,... conditioned on the class c 

Independence assumption of 
Naive Bayes is the simplest 
assumption. Often much more 
complicated relationships needs 
to be represented.  

A good way to do this is a 
Graphical Model 
(aka. Byesian Network)
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Cough

Graphical Models

More complicated models 
consider the dependence 
between different variables. 
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Discriminative vs. Generative Classifiers

Discriminative Classification:
Find the boundary between classes

1. Assume some functional form 
for P(Y|X)

2. Estimate parameters of P(Y|X) 
directly from training data

Training classifiers involves estimating f: X  Y, or P(Y|X) “Y given X”

Generative Classification:
Model each class & see which fits better 

1.Assume some functional form for P(X|Y), 
P(X)

2.Estimate parameters of P(X|Y), P(X) 
directly from training data

3.Use Bayes rule to calculate P(Y|X= xi)
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Discriminative vs. Generative Classifiers

Discriminative:
+ Model directly what you care about
+ With many examples usually more accurate
+ Often faster to evaluate, can scale well to many examples & classes 
Generative:
+ Allows more flexibility to model relationships between variables
+ Can handle compositionality, missing & occluded parts (more “object oriented”)
+ Often needs less labeled examples   

“On Discriminative vs. 
Generative classifiers: A 
comparison of logistic 
regression and naïve 
Bayes,” A. Ng and M. 
Jordan, NIPS 2002.
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Review: Typical Components 
● Hypothesis generation

● Sliding window, Segmentation, 
feature point detection, random, search 

● Encoding of (local) image data
● Colors, Edges, Corners, Histogram of Oriented 

Gradients, Wavelets, Convolution Filters

● Relationships of different parts to each other
● Blur or histogram, Tree/Star, Pairwise/Covariance   

● Learning from labeled examples
● Selecting representative examples (templates), 

Clustering, Building a cascade 
● Classifiers: Bayes, Logistic regression, SVM, 

Decision Trees, AdaBoost, ...  
● Generative vs. Discriminative

● Verification - removing redundant, overlaping,  
incompatible examples

● Non-Max Suppression, context priors, 
geometry     

Exemplar Summary
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Implicit shape models

• Visual codebook is used to index votes for 
object position

B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, 
ECCV Workshop on Statistical Learning in Computer Vision 2004

training image annotated with object localization info

visual codeword with
displacement vectors

Slides by Lana Lazebnik, some adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Implicit shape models

• Visual codebook is used to index votes for 
object position

B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, 
ECCV Workshop on Statistical Learning in Computer Vision 2004

training image annotated with object localization info

visual codeword with
displacement vectors

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Implicit shape models: Training

1. Build codebook of patches around extracted 
interest points using clustering
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Implicit shape models: Training

1. Build codebook of patches around extracted 
interest points using clustering
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Implicit shape models: Training

1. Build codebook of patches around extracted 
interest points using clustering
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Implicit shape models: Testing
1. Given test image, extract patches, match to 

codebook entry 

2. Cast votes for possible positions of object center

3. Search for maxima in voting space

4. Extract weighted segmentation mask based on 
stored masks for the codebook occurrences
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Source: B. Leibe

Original image

Example: Results on Cows
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Interest points

Example: Results on Cows

Source: B. Leibe
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Example: Results on Cows

Matched patches
Source: B. Leibe
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Example: Results on Cows

Probabilistic votes
Source: B. Leibe
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Example: Results on Cows

Hypothesis 1
Source: B. Leibe
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Example: Results on Cows

Hypothesis 1
Source: B. Leibe



35 : COS429 : L9 : 13.10.16 : Andras Ferencz Slide Credit:

Example: Results on Cows

Hypothesis 3
Source: B. Leibe
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Additional examples

B. Leibe, A. Leonardis, and B. Schiele, 
Robust Object Detection with Interleaved Categorization and Segmentation, IJCV 
77 (1-3), pp. 259-289, 2008.

http://www.mmp.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf
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Generative part-based models

R. Fergus, P. Perona and A. Zisserman, 
Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR 2003

http://cs.nyu.edu/~fergus/papers/fergus03.pdf
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Probabilistic model

h: assignment of features to parts
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Probabilistic model
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)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h


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Distribution 
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Probabilistic model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(
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Probabilistic model
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Results: Faces

Face
shape
model

Patch
appearance
model

Recognition
results
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Results: Motorbikes and airplanes
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Pictorial structures

P. Felzenszwalb and D. Huttenlocher, Pictorial Structures for Object Recognition, 
IJCV 61(1), 2005

•   Set of parts (oriented rectangles)
   connected by edges

•   Recognition problem: find the 
   most probable part layout l1, …, ln 
   in the image

Felzenszwalb

http://people.cs.uchicago.edu/~pff/papers/blobrecJ.pdf
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Pictorial structures

• MAP formulation: maximize posterior

• Energy-based formulation: minimize minus the log of 
probability:
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Deformation 
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Felzenszwalb
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Deformable Parts Model 

Detections

Template 
Visualization

Felzenszwalb

P. Felzenszwalb, 
R. Girshick, 
D. McAllester, 
D. Ramanan
“Object Detection with Discriminatively 
Trained Part Based Models”



47 : COS429 : L9 : 13.10.16 : Andras Ferencz Slide Credit:

So many options... How to choose?  
● Hypothesis generation

● Sliding window, Segmentation, 
feature point detection, random, search 

● Encoding of (local) image data
● Colors, Edges, Corners, Histogram of Oriented 

Gradients, Wavelets, Convolution Filters

● Relationship of different parts to each other
● Blur or histogram, Tree/Star, Pairwise/Covariance   

● Learning from labeled examples
● Selecting representative examples (templates), 

Clustering, Building a cascade 
● Classifiers: Bayes, Logistic regression, SVM, 

Decision Trees, AdaBoost, ...  
● Generative vs. Discriminative

● Verification - removing redundant, overlaping,  
incompatible examples

● Non-Max Suppression, context priors, 
geometry     

Exemplar Summary



48 : COS429 : L9 : 13.10.16 : Andras Ferencz Slide Credit:

Train vs. Test Accuracy
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Generalization

● Components of generalization error 
– Bias: how much the average model over all training sets differ from 

the true model?
● Error due to inaccurate assumptions/simplifications made by the 

model
– Variance: how much models estimated from different training sets 

differ from each other
● Underfitting: model is too “simple” to represent all the 

relevant class characteristics
– High bias and low variance
– High training error and high test error

● Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
– Low bias and high variance
– Low training error and high test error

Slide credit: L. Lazebnik



Bias-Variance Trade-of

• Models with too few 
parameters are inaccurate 
because of a large bias 
(not enough flexibility).

• Models with too many 
parameters are inaccurate 
because of a large 
variance (too much 
sensitivity to the sample).

Slide credit: D. Hoiem



Bias-Variance Trade-of

E(MSE) = noise2  + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural 
Networks” book): 
•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable 
error

Error due to 
incorrect 

assumptions

Error due to 
variance of training 

samples

Slide credit: D. Hoiem

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf
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Try out what hyperparameters work best on test set.

Cross Validation
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53

Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

Cross Validation



54 : COS429 : L9 : 13.10.16 : Andras Ferencz Slide Credit:

      Validation data
use to tune hyperparameters

Cross Validation



55 : COS429 : L9 : 13.10.16 : Andras Ferencz Slide Credit:

Cross-validation
cycle through the choice of which fold 
is the validation fold, average results.

Cross Validation
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So…
● No classifier is inherently 

better than any other: you 
need to make assumptions 
to generalize

● Three kinds of error
– Inherent: unavoidable
– Bias: due to over-

simplifications
– Variance: due to inability

to perfectly estimate 
parameters from limited data

Slide credit: D. HoiemSlide credit: D. Hoiem
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What to remember about classifiers

● Machine learning algorithms are tools, not 
dogmas

● Try simple classifiers first

● Better to have smart features and simple 
classifiers than simple features and smart 
classifiers

● Use increasingly powerful classifiers with 
more training data (bias-variance tradeoff)

Slide credit: D. Hoiem
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How to reduce variance?

● Choose a simpler classifier

● Regularize the parameters

● Get more training data

Slide credit: D. Hoiem
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