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Review: Typical Components

 Hypothesis generation
 Sliding window, Segmentation,
feature point detection, random, search

* Encoding of (local) image data o
« Colors, Edges, Corners, Histogram of Oriented

Gradients, Wavelets, Convolution Filters

MOUT

* Relationship of different parts to each other
 Blur or histogram, Tree/Star, Pairwise/Covariance

* Learning from labeled examples P

« Selecting representative examples (templates),
Clustering, Building a cascade

» Classifiers: Bayes, Logistic regression, SVM, I

AdaBoost, ... Py

« Generative vs. Discriminative

Exemplar Summary
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« Verification - removing redundant, overlaping,
incompatible examples
* Non-Max Suppression, context priors,
geometry
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Example 1: Chamfer matching (Pedestrian Detection)
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Hierarchy of templates

Gavrila & Philomin ICCV 1999 Slides from K. Grauman and B. Leibe



Example 2: Viola/Jones (Face Detection)
Robust Realtime Face Dection, IJCV 2004, Viola and Jones

Features: “Haar-like Rectangle filters”
*Differences between sums of pixels in adjacent rectangles

e Y E E

2-rectangle features I

60,000 X100 =6,000,000

E 3-rectangle features Unique Features

4-rectangles features

50% 20% 2%
IMAGE — — — (20 Featureg —> FACE
SUB-WINDOW

lp lF lF

NON-FACE NON-FACE NON-FACE

Slide from: Derek Hoiem
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(No Geometry) Example: Color Histograms

WHEEL
RAaYTILER

Swain and Ballard, Color Indexing, IJCV 1991

6:COS429 :1.8:11.10.16 : Andras Ferencz Slide Credit: Svetlana Lazebnik



http://www.inf.ed.ac.uk/teaching/courses/av/LECTURE_NOTES/swainballard91.pdf

(No Geometry) Exam

nle: Bad of Words
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Object

Bag of
‘words’




Clustering (usually k-means)
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Machine Learning Problems

Supervised Learning  Unsupervised Learning

cIaSS|f|c§1t|o_n or clustering
categorization

dimensionality

reqgression .
J reduction

Continuous Discrete




Clustering Strategies

e K-means

- |teratively re-assign points to the nearest
cluster center

* Agglomerative clustering

- Start with each point as its own cluster
and iteratively merge the closest clusters

* Mean-shift clustering
- Estimate modes of pdf

* Spectral clustering

- Split the nodes in a graph based on
assigned links with similarity weights

As we go down this chart, the clustering strategies
have more tendency to transitively group points
even If they are not nearby in feature space

10 : COS429 : 1.8 : 11.10.16 : Andras Ferencz Slide Credit;



« Hypothesis generation
« Sliding window, Segmentation,
feature point detection, random, search

Today

Encoding of (local) image data
e Colors, Edges, Corners, Histogram of Oriented
Gradients, Wavelets, Convolution Filters

Relationship of different parts to each other

LEFT
EDGE

 Blur or histogram, Tree/Star, Pairwise/Covariance

Learning from labeled examples

« Selecting representative examples (templates),
Clustering, Building a cascade

« Classifiers: K-NN, Logistic regression,
SVM, AdaBoost, Bayes ...

« Generative vs. Discriminative

Verification - removing redundant, overlaping,
iIncompatible examples
* Non-Max Suppression, context priors,
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Dalal and Trigs Pedestrian Detector

Input image
-a— Detection window

Tee = In practice, effect is
OrMANiSe gamma & coil | I~ very small (about 1%)
while some

computational time is
Compute gradients required*

Cell —»

Accumulate weighted votes
for gradient orientation over
spatial cells

Block ——

Normalise contrast within
overlapping blocks of cells

Overlap
of Blocks

Feature vector, /= Collect HOGs for all blocks
[ oy veCyyEy ] over detection window

*Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, SanDiego, USA, June 2005. Vol. Il, pp. 886-893.
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Computing gradients

Input image
— o wndow
Mask 1D 1D 1D .
g Type centered uncentered cubic-corrected 2x2 diagonal 3x3 Sobel
Normalise gamma & colour
010 11 =10
-1 of 72 0 %
Compute gradients Opera [-1,0 -1 01
ompute gradien ~h Y - - -
sl tor 1] [-1.1] [1.-8,0.8,-1] -1 00 -1 -2 -10
10 1f 10 0 0;
Accumulate Weighted votes gt 2 14
for gradient orientation over
spatial cells Miss
" rate 11% 12.5% 12% 12.5% 14%
at 10
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Normalise contrast within
overlapping blocks of cells

L
W

| Collect HOGs for all blocks
over detection window




Histogram of Oriented Gradients

HoGify

20x20 cells

I[JP aEk?é‘sz”gﬁé C Yf%&?gi]Andras Ferencz Slide Credit: Noah Snhavely



Histogram of Oriented Gradients
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HOG feature vector for one block

7= R T R

Angle Magnitude
0 15 25 25 5 20 20 10
10 15 25 30 5 10 10 5
45 95 101 110 20 30 30 40
47 97 101 120 50 70 70 80
. Binary voting 166 Magnitude voting

140 —
120
100 —

80
- 60

1 40
0 0
0-19

20-39  40-59 60-79 80-99 100-119 120-139 140-159 160-179

0-19 20-39 40-59  60-79 80-99 100-119 120-139 140-159 160-179

Feature vector extends while window moves

16 : COS429 : 1.8 : 11.10.16 : Andras Ferencz Slide Credit: Qing J.Wang &Ru B. Zhang



Accumulate weight votes over spatial cells

Input image
-— Detection window

Normalise gamma & colour

Compute gradients

Accumulate weighted votes
for gradient orientation over
spatial cells

Normalise contrast within
overlapping blocks of cells

Collect HOGs for all blocks
over detection window

17 : COS429 : 1.8 : 11.10.16 : Andras Ferencz

How many bins should be in histogram?
Should we use oriented or non-oriented gradients?
How to select weights?

Should we use overlapped blocks or not? If yes,
then how big should be the overlap?

What block size should we use?

DET - effect of number of orientation bins
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E0.051 . pin= 4 (0-180) AN N
-4~ bin= 3 (0-180) Qom #Y,
bin=18 (0-360)| % I
0.02H -#- bin=12 (0-360) N g
bin= 8 (0-360) 5 A
bin= 6 (0-360 : BV
0.01 1.1 ) e

“107® 107° 107 107" 107 10
false positives per window (FPPW)

Slide Credit: Qing J.Wang &Ru B. Zhang



Accumulate weight votes over spatial cells

Input image
~— Detection window

L
Normalise gamma & colour

L

Compute gradients

Accumulate weighted votes
for gradient orientation over
spatial cells

L 4

Normalise contrast within
overlapping blocks of cells

Y

Collect HOGs for all blocks
over detection window

How many bins should be in histogram?
Should we use oriented or non-oriented gradients?

How to select weights?

Should we use overlapped blocks or not? If yes,
then how big should be the overlap?

What block size should we use?

20

Miss Rate (%)

10X10 o= el
____.--'|’"f- 3}(3 .
4x4 Block size (Cells)



Accumulate weight votes over spatial cells

Input image
-— Detection window

Normalise gamma & colour

Compute gradients

Accumulate weighted votes
for gradient orientation over
spatial cells

Normalise contrast within
overlapping blocks of cells

Collect HOGs for all blocks
over detection window

19 : COS429 : 1.8 : 11.10.16 : Andras Ferencz

miss rate

How many bins should be in histogram?
Should we use oriented or non-oriented gradients?
How to select weights?

Should we use overlapped blocks or not? If yes,
then how big should be the overlap?

What block size should we use?

DET - effect of overlap (cell size=8, num cell = 2x2, wt=0)
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Slide Credit: Qing J.Wang &Ru B. Zhang



Contrast normalization

Input image
_F—Dehechmvnm DET - effect of normalization methods
| B SR A A
A “t'\: : B ﬁ«\
| Normalise gamma & colour ‘ (0T [ SRR .o SRR i
. :Ef s .
2 LS
Compute gradients | 2 | : g?.g» A '
£ 0.05H o L2-Hys -a%‘?;h:&_
: -&- L2-norm }‘g*‘*
Accumulate weighted votes ~v- L1-Sart '\."‘E-‘;\
for gradient orientation over - II:I.I —norm ; 0 E
spatial cells 0 norm N
: 0.02 -#- Window norm ; '
ﬂ, 1070 107 107° 107
: false positives per window (FPPW)
Normalise contrast within
overlapping blocks of cells
1% v
Ll1- norm =—— L1- sgrt = L2 - norm =
W HVH1 +te Hle +té Hsz + £

| Collect HOGs for all blocks
over detection window

L2 - Hys - L2-norm followed by clipping (limiting the maximum values of v to 0.2) and
renormalising




Making feature vector

Input image
~ -a— Detection window

Normalise gé"_mma & colour
Compute-_"gradients

" Accumulate \Aéighted votes
for gradient orientation over
s_patial cells

Normalise contrast within
overlapping blocks of cells

over detection window

Collect HOGs for all blocks -

st -
- 5'\ |.‘_
f—

Cénter bin
Center bin

T

—

(a) R-HOG/SIFT (b) C-HOG (c) Single centre C-HOG

Variants of HOG descriptors. (a) A rectangular HOG (R-HOG) descriptor with 3 x 3 blocks of
cells. (b) Circular HOG (C-HOG) descriptor with the central cell divided into angular sectors
as in shape contexts. (c) A C-HOG descriptor with a single central cell.



HOG example

SRRy .

In each triplet: (1) the input image, (2) the corresponding R-HOG feature vector (only the dominant orientation of each cell is
shown), (3) the dominant orientations selected by the SVM (obtained by multiplying the feature vector by the
corresponding weights from the linear SVM).

22 : COS429 : 1.8 :11.10.16 : Andras Ferencz Slide Credit: Qing J.Wang &Ru B. Zhang
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Feature Vector —» Classification Result

Supervised Learning  Unsupervised Learning

cIaSS|f|c§1t|o_n or clustering
categorization

dimensionality

reqgression .
J reduction

Continuous Discrete




The machine learning framework

output  prediction Image
function features

 Training: given a training set of labeled examples {(X1,Y1), ...,

(Xn,Yn) ), estimate the prediction function f by minimizing the
prediction error on the training set

* Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)

24 : COS429 : 1.8 : 11.10.16 : Andras Ferencz Slide Credit: L. Lazebnik



Classification

* Assign input vector to one of two or more
classes

* Any decision rule divides input space into
decision regions separated by decision
boundaries ,

Xy
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Many classifiers to choose from

« SVM

* Neural networks Which is the best one?
* Nalve Bayes

* Bayesian network

* Logistic regression

* Randomized Forests

* Boosted Decision Trees

* K-nearest neighbor

* RBMs

 Etc.

26 : COS429 : 1.8 : 11.10.16 ;: Andras Ferencz Slide Credit: D. Hoiem



Which Algorithm to use?

classification scikit-learn

NOT
WORKING

NOT
WORKING

data Gio

>50
YES samples
predicting a
category
NO,
<100K vES
samples
\

YES
predil:ting. a .
quantity
just
looking W% .
predicting
structure

YES NO

NO
NOT
YES
Text RRRKING <100K
Data samples

YES

regression

YES

do you have
labeled
NO data

few features
should be
important

number of
categories
known

clustering

NOT

WORKING .
oT
WORKING
YES
<10K
samples NO

dimensionality
reduction

algorithm cheat-sheet




(1-) Nearest Neighbor

m | ®

o .
Training 2> Test 9 ezr:r::"rllgs
examples [] example P
from class 1 from class 2
]
[ ®
o o

f(x) = label of the training example nearest to x

* All we need is a distance function for our inputs
* No training required!



K-nearest neighbor
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1-nearest neighbor

X2

x1




3-nearest neighbor

X2

x1




5-nearest neighbor

X2

x1




K-NN Classifiers

o by .
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1-NN classifier 5-NN classifier

Questions:

- What distance function to use L1, L2?

- What is the accuracy of the 1-NN classifier on the training data?
- What is the accuracy of the 5-NN classifier on the training data?
- Which one do expect to do better on the test data?




e
Classifiers: Linear

n N ® .
. o
y=1 P Y=-1
a o
n
- o
|

* Find a linear function to separate the classes:

y=f(x) = sgn(w - x +b)



e
Linear classifiers

* Find linear function to separate positive
and negative examples

O
° Xx; positive: x,;-w+b=0
® x. negative: x.-w+b<0
. 1 1
O
O
® o e o
o O
O
O
o O
Which line
® is best?
O

35:C0OS429 : .8 : 11.10.16 : Andras Ferencz Slide Credit: Kristin Grauman



Using Least Squares for Classification

* Find a linear function to separate the classes:

y=f(x) = sgn(w - x + b)



Using Least Squares for Classification

* Find a linear function to separate the classes:
y=f(x) = sgn(w - x + b)



Using least squares for classification

squares
regression|

A N N,
If the right answer is 1 and

the model says 1.5, it loses,
So it changes the boundary
to avoid being “too correct”




The Problem: Loss Function

Some Classification Loss Functions

E(z) Squared Loss
Hinge Loss
Log Loss

0/1 Loss
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Sigmoid

We model the probability of a label Y to be equal y € {—1,1}, given a
data point x € R", as:

’
1+ exp(—y(w’x+ b))

This amounts to modeling the /og-odds ratio as a linear function of X:

P(Y=1|x) 1 of
IOQP(Y:—1|X)_W X+ b.

0.6
.

105

0.3

» The decision boundary P(Y =1 | x) = P(Y = —1 | x) is the
hyperplane with equation w’x + b = 0.

» Theregion P(Y =1|x) > P(Y =—-1]|x) (i.e., w x + b > 0)
corresponds to points with predicted label y = +1.
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Log Loss

The likelihood function is

sk !09l1+gxp(-x))|

1
- H 1 4+ e—yi(wix+b)

i=1

Now maximize the log-likelihood:

—yi(w X,+b)
max L(w,b) : Zlog +e )

05
i=1

In practice, we may consider adding a regularization term

max L(w,b) + Ar(w),

with r(w) = [[w[}3 or r(x) = |[w]:.




Logistic Result

Logistic
Regression

least

squares
) regression|
4
o
6 1
LA




Using Logistic Regression

* Quick, simple i - « XXX
classifier (try it first) X A Y R g
» Outputs a probabilistic | | . * . . : :
label confidence g T F N
. Use L2 or L1 | i 2
. . 5 0 o Xy x*
regularization of 0 c By o g
- L1 does feature S o Xox
selection and is e TR
robust to irrelevant | 7 o oo 5 o N N
features but slower | “ 5 = T v s s 0
to train

43 : COS429 : 1.8 : 11.10.16 : Andras Ferencz Slide Credit:



Classifiers: Linear SVM

X2

x1

* Find a linear function to separate the classes:

f(x) =sgn(w - x+Db)



Classifiers: Linear SVM

* Find a linear function to separate the classes:

f(x) =sgn(w - x+Db)



Classifiers: Linear SVM

* Find a linear function to separate the classes:

f(x) =sgn(w - x+Db)
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Support vector machines: Margin

* Want line that maximizes the margin.

Support vectors “ Margin

C. Burges,
A Tutorial on Support Vector Machines for Patter

A7RECOSARPNLS : 11.10.16 : Andras Ferencz

4, T, X X, positi.ve (y;, =1):
X, negative (y, =-1):

For support, vectors,

X, wW+b =1

X, w+b <-1

X, W+b ==

a

E(2)

Hinge Loss

L(y,f(x)) = max(0,1-y-f(x))

Slide Credit: Kristin Grauman


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Nonlinear SVMs

« Datasets that are linearly separable work out great:

—e .leo d?.-. -
* But what If the dataset Is just too hard?
@ & @ (l) *-0—@ o—@ .—>x

* We can map it to a higher-dimensional space:

X . -
48 : COS429 : 1.8 : 11.10.16 : Andras Ferencz Slide Cregide credit: Andrew Moore



Nonlinear SVMs

* General idea: the original input space can

always be mapped to some higher-

dimensional feature space where the
training set is separable:

N

®: x— ¢(x)

49 : COS429 : L8 : 11.10.16 : Andras Ferencz

Slide CreS ;ge credit: Andrew Moore
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Nonlinear SVMs

* The kernel trick: instead of explicitly
computing the lifting transformation ¢(x),
define a kernel function K such that

K(x;,x;) = o(x:) - 9(X))
(to be valid, the kernel function must

satisfy Mercer’s condition)

* This gives a nonlinear decision boundary
In the original feature space:

2y p(x) p(x) +b =) e,y K(x;,,x) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
snd KngwledaesDiscoyery.: 13RBas Ferencz Slide Credit:


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Nonlinear kernel: Example

» Consider the mappingx) =(x,x°)

A _XZ

-

/

O (x) ¢(¥) =(x,x%) (¥, »°) =xy +x°y°
K(x,y) =xy+x°y°



Kernels for bags of features

* Histogram intersection kernel:

I,y = minGh (0, (1)

* Generalized Gaussian kernel:

1
K(h.h) =expl- — D(h . 1)1
(1 2) XpD p (1 2)['

* D can be (inverse) L1 distance,

Euclidean distance, 2 distance, etc.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local Features and Kernels for Classifcation of Texture and Object Categories: A Compr

shersns2ud)8 : 11.10.16 : Andras Ferencz Slide Credit:


http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf
http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf

.
What about multi-class SVMs?

* Unfortunately, there is no “definitive” multi-
class SVM formulation

* |In practice, we have to obtain a multi-class
SVM by combining multiple two-class SVMs

* One vs. others
- Traning: learn an SVM for each class vs. the others

- Testing: apply each SVM to test example and assign to it
the class of the SVM that returns the highest decision value

* One vs. one
- Training: learn an SVM for each pair of classes

- Testing: each learned SVM “votes” for a class to assign to
the test example

53 : C0OS429 : 1.8 : 11.10.16 ;: Andras Ferencz Slide Credit:



SVMs: Pros and cons

* Pros
- Many publicly available SVM packages:
http://www.kernel-machines.org/software
- Kernel-based framework is very powerful, flexible

- SVMs work very well in practice, even with very small
training sample sizes

e Cons
- No “direct” multi-class SVM, must combine two-class
SVMs

- Computation, memory
* During training time, must compute matrix of kernel
values for every pair of examples
* Learning can take a very long time for large-scale

problems
54 : COS429 : 1.8 : 11.10.16 : Andras Ferencz Slide Credit:


http://www.kernel-machines.org/software
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