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3 : COS429 : L8 : 11.10.16 : Andras Ferencz Slide Credit:

Review: Typical Components 
● Hypothesis generation

● Sliding window, Segmentation, 
feature point detection, random, search 

● Encoding of (local) image data
● Colors, Edges, Corners, Histogram of Oriented 

Gradients, Wavelets, Convolution Filters

● Relationship of different parts to each other
● Blur or histogram, Tree/Star, Pairwise/Covariance   

● Learning from labeled examples
● Selecting representative examples (templates), 

Clustering, Building a cascade 
● Classifiers: Bayes, Logistic regression, SVM, 

AdaBoost, ...  
● Generative vs. Discriminative

● Verification - removing redundant, overlaping,  
incompatible examples

● Non-Max Suppression, context priors, 
geometry     

Exemplar Summary
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Hierarchy of templates

Slides from K. Grauman and B. Leibe

Example 1: Chamfer matching (Pedestrian Detection)

Gavrila & Philomin ICCV 1999
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Example 2: Viola/Jones (Face Detection)

Features: “Haar-like Rectangle filters”
•Differences between sums of pixels in adjacent rectangles

000,000,6100000,60 
Unique Features

Robust Realtime Face Dection, IJCV 2004, Viola and Jones

3-rectangle features

4-rectangles features

2-rectangle features
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Slide from: Derek Hoiem
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(No Geometry) Example: Color Histograms

Swain and Ballard, Color Indexing, IJCV 1991.

Svetlana Lazebnik

http://www.inf.ed.ac.uk/teaching/courses/av/LECTURE_NOTES/swainballard91.pdf
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ObjectObject Bag of Bag of 
‘words’‘words’

(No Geometry) Example: Bad of Words

Svetlana Lazebnik
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Clustering (usually k-means)Clustering (usually k-means)

Vector quantization

…

  Josef Sivic



9 : COS429 : L8 : 11.10.16 : Andras Ferencz Slide Credit:

Machine Learning Problems

James Hayes
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Clustering Strategies
● K-means

– Iteratively re-assign points to the nearest 
cluster center

● Agglomerative clustering
– Start with each point as its own cluster 

and iteratively merge the closest clusters
● Mean-shift clustering

– Estimate modes of pdf
● Spectral clustering

– Split the nodes in a graph based on 
assigned links with similarity weights

As we go down this chart, the clustering strategies 
have more tendency to transitively group points 

even if they are not nearby in feature space



11 : COS429 : L8 : 11.10.16 : Andras Ferencz Slide Credit:

Today   
● Hypothesis generation

● Sliding window, Segmentation, 
feature point detection, random, search 

● Encoding of (local) image data
● Colors, Edges, Corners, Histogram of Oriented 

Gradients, Wavelets, Convolution Filters

● Relationship of different parts to each other
● Blur or histogram, Tree/Star, Pairwise/Covariance   

● Learning from labeled examples
● Selecting representative examples (templates), 

Clustering, Building a cascade 
● Classifiers: K-NN, Logistic regression, 

SVM, AdaBoost,  Bayes ...  
● Generative vs. Discriminative

● Verification - removing redundant, overlaping,  
incompatible examples

● Non-Max Suppression, context priors, 
geometry     

Exemplar Summary
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Dalal and Trigs Pedestrian Detector

In practice, effect is 
very small (about 1%) 
while some 
computational time is 
required*

*Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, SanDiego, USA, June 2005. Vol. II, pp. 886-893.

Qing J.Wang &Ru B. Zhang
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Computing gradients
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Histogram of Oriented Gradients

[Dalal and Triggs, CVPR 2005]

10x10 cells

20x20 cells

HoGifyHoGify

Noah Snavely
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Histogram of Oriented Gradients
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HOG feature vector for one block
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Feature vector extends while window moves

Qing J.Wang &Ru B. Zhang
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Accumulate weight votes over spatial cells

• How many bins should be in histogram?

• Should we use oriented or non-oriented gradients?

• How to select weights?

• Should we use overlapped blocks or not? If yes, 
then how big should be the overlap?

• What block size should we use?

Qing J.Wang &Ru B. Zhang
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Accumulate weight votes over spatial cells

• How many bins should be in histogram?

• Should we use oriented or non-oriented gradients?

• How to select weights?

• Should we use overlapped blocks or not? If yes, 
then how big should be the overlap?

• What block size should we use?

Qing J.Wang &Ru B. Zhang
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Accumulate weight votes over spatial cells

• How many bins should be in histogram?

• Should we use oriented or non-oriented gradients?

• How to select weights?

• Should we use overlapped blocks or not? If yes, 
then how big should be the overlap?

• What block size should we use?

Qing J.Wang &Ru B. Zhang
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Contrast normalization
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HysL 2 - L2-norm followed by clipping (limiting the maximum values of v to 0.2) and 
renormalising

Qing J.Wang &Ru B. Zhang
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Making feature vector

Variants of HOG descriptors. (a) A rectangular HOG (R-HOG) descriptor with 3 × 3 blocks of 
cells. (b) Circular HOG (C-HOG) descriptor with the central cell divided into angular sectors 

as in shape contexts. (c) A C-HOG descriptor with a single central cell.

Qing J.Wang &Ru B. Zhang
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HOG example

In each triplet: (1) the input image, (2) the corresponding R-HOG feature vector (only the dominant orientation of each cell is 
shown),                 (3) the dominant orientations selected by the SVM (obtained by multiplying the feature vector by the 

corresponding weights from the linear SVM).

Qing J.Wang &Ru B. Zhang
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Feature Vector → Classification Result

James Hayes
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The machine learning framework

ŷ = f(x)

● Training: given a training set of labeled examples {(x1,y1), …, 
(xN,yN)}, estimate the prediction function f by minimizing the 
prediction error on the training set

● Testing: apply f to a never before seen test example x and 
output the predicted value y = f(x)

output prediction 
function

Image 
features

 L. Lazebnik



Classification
• Assign input vector to one of two or more 

classes

• Any decision rule divides input space into 
decision regions separated by decision 
boundaries

Slide credit: L. Lazebnik
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Many classifiers to choose from

● SVM
● Neural networks
● Naïve Bayes
● Bayesian network
● Logistic regression
● Randomized Forests
● Boosted Decision Trees
● K-nearest neighbor
● RBMs
● Etc.

Which is the best one?

D. Hoiem
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Which Algorithm to use? 
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 (1-) Nearest Neighbor

f(x) = label of the training example nearest to x

● All we need is a distance function for our inputs
● No training required!

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

 L. Lazebnik
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K-nearest neighbor
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1-nearest neighbor
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3-nearest neighbor
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5-nearest neighbor

x x

x
x

x

x

x

x
o

o
o

o

o

o

o

x2

x1

+

+

D. Hoiem



33 : COS429 : L8 : 11.10.16 : Andras Ferencz Slide Credit:

Questions: 
- What distance function to use L1, L2? 
- What is the accuracy of the 1-NN classifier on the training data?
- What is the accuracy of the 5-NN classifier on the training data?
- Which one do expect to do better on the test data? 

the data 1-NN classifier 5-NN classifier

A. Karpathy

K-NN Classifiers 
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Classifiers: Linear

● Find a linear function to separate the classes:

ŷ=f(x) = sgn(w  x + b)

Slide credit: L. Lazebnik

y=1 Y=-1
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Linear classifiers

• Find linear function to separate positive 
and negative examples

xi positive: x i⋅w+b≥0
xi negative: xi⋅w+b<0

Which line
is best?

 Kristin Grauman
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Using Least Squares for Classification

● Find a linear function to separate the classes:

ŷ=f(x) = sgn(w  x + b)

Slide credit: L. Lazebnik

1

 -1

0

x

 y

y=1

Y=-1

Class
Output:

Decision Point (“Boundary”)



37 : COS429 : L8 : 11.10.16 : Andras Ferencz Slide Credit:

Using Least Squares for Classification

● Find a linear function to separate the classes:

ŷ=f(x) = sgn(w  x + b)

Slide credit: L. Lazebnik
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Using least squares for classification

If the right answer is 1 and 
the model says 1.5, it loses, 
so it changes the boundary 
to avoid being “too correct”

least 
squares 
regression

J. Hinton
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The Problem: Loss Function

Recall: Regression Loss 
Functions 

Some Classification Loss Functions

Squared Loss
Hinge Loss
Log Loss
0/1 Loss
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Sigmoid

Ziv-Bar Joseph
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Log Loss

Ziv-Bar Joseph
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Logistic Result

least 
squares 
regression

Logistic 
Regression
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Using Logistic Regression
● Quick, simple 

classifier (try it first)
● Outputs a probabilistic 

label confidence
● Use L2 or L1 

regularization

– L1 does feature 
selection and is 
robust to irrelevant 
features but slower 
to train
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Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)
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Classifiers: Linear SVM
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Classifiers: Linear SVM
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Support vector machines: Margin

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive
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MarginSupport vectors

C. Burges, 
A Tutorial on Support Vector Machines for Patter
n Recognition
,  Data Mining and Knowledge Discovery, 1998 

For support, vectors, 1 bi wx
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Kristin Grauman

Hinge Loss

L(y,f(x)) = max(0,1−y f(x))⋅

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore
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Φ:  x → φ(x)

Nonlinear SVMs

• General idea: the original input space can 
always be mapped to some higher-
dimensional feature space where the 
training set is separable:

Slide credit: Andrew Moore
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Nonlinear SVMs

• The kernel trick: instead of explicitly 
computing the lifting transformation φ(x), 
define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

(to be valid, the kernel function must 
satisfy Mercer’s condition)

• This gives a nonlinear decision boundary 
in the original feature space:

bKyby
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iii
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iii   ),()()( xxxx 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Nonlinear kernel: Example

• Consider the mapping ),()( 2xxx 
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Kernels for bags of features

• Histogram intersection kernel:

• Generalized Gaussian kernel:

• D can be (inverse) L1 distance, 
Euclidean distance, χ2 distance, etc.
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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, 
Local Features and Kernels for Classifcation of Texture and Object Categories: A Compr
ehensive Study
, IJCV 2007

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf
http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf
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What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-
class SVM formulation

• In practice, we have to obtain a multi-class 
SVM by combining multiple two-class SVMs 

• One vs. others
– Traning: learn an SVM for each class vs. the others
– Testing: apply each SVM to test example and assign to it 

the class of the SVM that returns the highest decision value

• One vs. one
– Training: learn an SVM for each pair of classes
– Testing: each learned SVM “votes” for a class to assign to 

the test example

Slide credit: L. Lazebnik
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SVMs: Pros and cons

• Pros
– Many publicly available SVM packages:

http://www.kernel-machines.org/software
– Kernel-based framework is very powerful, flexible
– SVMs work very well in practice, even with very small 

training sample sizes

• Cons
– No “direct” multi-class SVM, must combine two-class 

SVMs
– Computation, memory 

● During training time, must compute matrix of kernel 
values for every pair of examples

● Learning can take a very long time for large-scale 
problems

http://www.kernel-machines.org/software
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