Lecture 7
Introduction to Recognition

COS 429: Computer Vision
Object recognition: let's try something simple

This is a chair

Find the chair in this image

Output of normalized correlation
Object recognition: let's try something simple

Find the chair in this image

Simple template matching is not going to be enough
How about SIFT based alignment?

SIFT Matching with RANSAC

- Good at matching same **instance** of:
 - General textured objects from similar views
 - Flat textured objects from fairly different views (using affine or homography)

- But it is not good at matching between:
 - Non-flat objects from different views
 - Distinct instances from the same category
 => Would need template for each instance from each view!
Challenges 1: view point variation

Michelangelo 1475-1564

Slides: course object recognition
ICCV 2005
Challenges 2: illumination
Challenges 3: occlusion

Magritte, 1957
Challenges 4: scale
Challenges 5: deformation

Xu, Beihong 1943
Challenges 6: background clutter

Challenges 7: intra-class variation
How many visual object categories are there?

~10,000 to 30,000

Biederman 1987
~10,000 to 30,000
What do we want to recognize in an image?
Scene categorization or classification

- outdoor
- city/forest/factory/etc.
Image annotation / tagging / attributes

- street
- people
- building
- mountain
- tourism
- cloudy
- brick
- ...

Slide from: Svetlana Lazebnik
Object detection

- find pedestrians

Slide from: Svetlana Lazebnik
Image parsing / semantic segmentation
Scene understanding?
Typical Components

- **Hypothesis** generation
 - Sliding window, Segmentation, feature point detection, random, search

- **Encoding** of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters

- **Relationship** of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance

- **Learning** from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, AdaBoost, ...
 - Generative vs. Discriminative

- **Verification** - removing redundant, overlapping, incompatible examples
 - Non-Max Suppression, context priors, geometry
Example 1: Chamfer matching (Pedestrian Detection)

\[D_{\text{chamfer}}(T, I) = \frac{1}{|T|} \sum_{t \in T} d_I(t) \]

Gavrila & Philomin ICCV 1999

Slides from K. Grauman and B. Leibe
Example 1: Chamfer matching (Pedestrian Detection)

Hierarchy of templates

Gavrila & Philomin ICCV 1999
Example 2: Viola/Jones (Face Detection)

Robust Realtime Face Detection, IJCV 2004, Viola and Jones

Features: “Haar-like Rectangle filters”
- Differences between sums of pixels in adjacent rectangles

-1 +1

2-rectangle features

3-rectangle features

4-rectangle features

\[60,000 \times 100 = 6,000,000 \]
Unique Features
Example 2: Viola/Jones - Integral Images

- \(ii = \text{cumsum} (\text{cumsum}(\text{im}, 1), 2) \)

\[ii(x,y) = \text{Sum of the values in the grey region} \]

How to compute \(A+D-B-C \)?

How to compute \(B-A \)?
Example 2: Feature selection with Adaboost

1. Create a large pool of features

2. Select features that are discriminative and work well together:
 - “Weak learner” = feature + threshold + parity
 - Choose weak learner that minimizes error on the weighted training set
 - Reweight

\[
\begin{align*}
y_t(x) &= \begin{cases}
+1 & \text{if } h_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases} \\
Y(x) &= \sum \alpha_t y_t(x) \\
\text{Decision} &= \begin{cases}
\text{face,} & \text{if } Y(x) > 0 \\
\text{non-face, otherwise}
\end{cases}
\end{align*}
\]
Example 2: Viola/Jones Cascaded Classifier

- first classifier: 100% detection, 50% false positives.
- second classifier: 100% detection, 40% false positives
 - (20% cumulative)
 - using data from previous stage.
- third classifier: 100% detection, 10% false positive rate
 - (2% cumulative)

- Put cheaper classifiers up front
Example 2: Viola/Jones results

Run-time: 15fps (384x288 pixel image on a 700 Mhz Pentium III)
Typical Components

- **Hypothesis** generation
 - Whole image, Sliding window, Segmentation, Feature point detection, Search...

- **Encoding** of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters...

- **Relationship** of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance...

- **Learning** from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, AdaBoost, ...
 - Generative vs. Discriminative

- **Verification** - removing redundant, overlapping, incompatible examples
 - Non-Max Suppression, context priors, geometry

Geometry is Hard. Let’s ignore it...
(No Geometry) Example: Color Histograms

(No Geometry) Example: Bag of Words

Object → Bag of ‘words’
Objects as texture

- All of these are treated as being the same

- No distinction between foreground and background: scene recognition?
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary

Salton & McGill (1983)
Interest Point Features
Clustering (usually k-means)

Vector quantization

Slide credit: Josef Sivic
learning

feature detection & representation

decision

codewords dictionary

recognition

category models (and/or) classifiers

category decision
The (obvious) problem with ignoring Geometry

All of these images have the same color histogram
Adding Geometry back: Spatial pyramid

Compute histogram in each spatial bin
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
More Next Time...

- **Hypothesis** generation
 - Sliding window, Segmentation, feature point detection, random, search

- **Encoding** of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters

- **Relationship** of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance

- **Learning** from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, AdaBoost, ...
 - Generative vs. Discriminative

- **Verification** - removing redundant, overlapping, incompatible examples
 - Non-Max Suppression, context priors, geometry