
COS 429: Computer Vision

Lecture 5
Model Fitting and Optimization:

Least Squares, Hough Transforms, 
RANSAC

COS429 : 29.09.16 : Andras Ferencz
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Review: Feature Matching
1. Find a set of   
    distinctive key-
    points 

3. Extract and 
    normalize the    
    region content  

2. Define a region 
    around each 
    keypoint   

4. Compute a local 
    descriptor from the 
    normalized region

5. Match local 
    descriptors
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Matching ambiguity

Locally feature matches 
are ambiguous

=> need to fit a model to 
find globally consistent 
matches   

 

 

?
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Model Fitting & Optimization
• Design challenges

– Design an appropriate model [next time]
● Enough degrees of freedom (DOFs) to allow good mapping
● As few DOFs as possible to enable good fitting

– Design a suitable goodness of fit measure between data and 
model

● Similarity should reflect application goals
● Encode robustness to outliers and noise

– Design an optimization method to find parameters of model
● Avoid local optima
● Find best parameters quickly
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Goodness of Fit: Loss Function

Also know as: cost, objective function
Negative of loss: reward, profit, utility, fitness function  

L(Z ;Ẑ )

Model: 

Estimated Output

Model Parameters

argmin
Θ

∑
i

L (Zi ;f (X ;Θ))

Goal of Optimization:

ẑ=f (X ;Θ)

Input data

Model 
estimate

Output data

Loss Function:
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1D Starter Example: Find the Vertical Edge 
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1D Starter Example: Find the Vertical Edge 

[List of <x,y> coordinates]

dx = abs(conv2(im, [1 2 1]'*[-1 0 1]/4, 'valid')); %dx filter
dxt = dx>=33; %threshold at edge energy=33
[y,x]=find(dxt); % find x,y coordinate of thresholded points
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Squared Loss (L2)  

Looking for a vertical line, so model is 

Let's start with L2 (Squared, regression) loss:

And find Θ such that sum(L
i
) is minimum. 

This is the mean! 

ẑ=f (Θ)=Θ= ^xpos

L(z i; ẑ)=(zi−ẑ )2
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Absolute Value Loss (L1)

Looking for a vertical line, so model 

Now try L1 (Absolute Value) loss:

And find Θ such that sum(L
i
) is minimum. 

This is the median! 

L(z i; ẑ)=|zi− ẑ|

ẑ=f (Θ)=Θ= ^xpos
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Histogram

Looking for a vertical line, so model 

How about just histogram and find maximum 
most popular bin. You can think of this as an 
impulse Loss: 

 This is the mode!

Questions: what happens as you change the 
bin size? What if you blur the bins of the 
Histogram? 

L(x ; x̂)=(|x i− x̂|>γ)

ẑ=f (Θ)=Θ= ^xpos
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More Robust Distance Loss Functions

L(z ; ẑ ;γ)=(min(|z− ẑ|,γ))

L(z ; ẑ ;γ)=(min((z− ẑ )2 ,γ2
))

Truncated L1:

Truncated L2:
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More Robust Distance Loss Functions

L(z ; ẑ ;σ )=
(zi−ẑ )2

σ
2
+(zi−ẑ )2

Terminology 
M-estimators - minimize some function 
other than L2

Cauchy:
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Search/Optimization Algorithms

Given a loss function, how do you find a minimum?

● Direct Methods:
● Least Squares fit (only for L2 norm)

● Iterative Methods:
● Start at some (random) initial location, and then
● Gradient descent (1st order) (stochastic variants) [lot more on this 

later]
● (Pseudo-) Newton methods (2nd order)
● Iterated Re-weighted Least Squares
● Iterated closest point (ICP) 

● Search (Hypothesize and test)
● Dense sampling (histogram, Hough transform)
● RANSAC
● Many other problem specific algorithms: Multi-grid, branch&bound, 

etc. 
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2D Example: Finding Straight Lines
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2D Example: Finding Straight Lines

Assume you know these points belong to a line.
How do your fit a line to it? 
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Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 
(xi, yi)

y=mx+b

Matlab: p = A \ y;

Modified from S. Lazebnik
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Outliers

• Least squares assumes Gaussian errors

• Outliers: points with extremely low 
probability of occurrence (according to 
Gaussian statistics)

• Have strong influence on least squares
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Reminder: Robust Estimation

• Goal: develop parameter estimation 
methods insensitive to small numbers of 
large errors

• General approach: try to give large 
deviations less weight

• M-estimators: minimize some loss function 
other than L2 [square of y – f(x, a, b,…) ]
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Iteratively Reweighted Least Squares

• We can iteratively approximate L1

• Approximation: convert to weighted least 
squares

with wi based on previous iteration
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Approximating other Losses

• Different options for weights to approximate 
other Loss functions
– Avoid problems with infinities

– Give even less weight to outliers

L1

“Fair”

Cauchy / Lorentzian

Welsch
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Summary: Least Squares
Ordinary    

+ Clearly specified objective
+ Optimization is easy
+ Finds global optimum 
- Loss is L2: may not be what you 
want to optimize 
- Sensitive to outliers
- Hard to detect multiple objects, 
lines, etc.

how do we figure out that 
these points belong 
together?

Iterated Reweighted    
+ Allows more robust objectives 
+ Better sensitive to limited 
number of outliers 
- Iterative, more costly to optimize
- Dependent on starting point: can 
fall into local minima
- Hard to detect multiple objects, 
lines, etc.

Neither still solves 
this problem:
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2D Histogram

Recall what worked best in 1-D: Histogram!
Can we do the same thing, now for 2 DOFs?  Rotate it...
Note: each edge point votes in each 1D histogram
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x

y

Hough transform
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

Hough space

Assemble the 1D histograms into a 2D 
histogram: use a polar representation for the 
parameter space 

Slide from S. Savarese

    siny  cosx

 



 


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features votes

Slide from S. Savarese

Hough transform
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features votes

Need to adjust grid size or smooth

Noisy data

Slide from S. Savarese

Hough transform - experiments
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Issue: spurious peaks due to uniform noise

features votes

Hough transform - experiments

Slide from S. Savarese
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1. Image -> Canny

Slide from S. Savarese
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2. Canny -> Hough votes

Slide from S. Savarese



29 : COS429 : 29.09.16 : Andras Ferencz 

3. Hough votes -> Edges 

Find peaks and post-process

Slide from S. Savarese



30 : COS429 : 29.09.16 : Andras Ferencz 

Another Hough transform example

http://ostatic.com/files/images/ss_hough.jpg
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Analyzing the Hough transform
• Think about parameterization & bin size

– Is the bin size uniform everywhere?

• Make it more robust: smoothing? 

• Cost: O(mn + mp) 
– Reduce using edge orientation? 

• How to find multiple lines? Segments?

• Can you find a circle with Hough?

• What is the effect as #Dims increases?

• Hypothesize and test: Do we need to sample in such a 
dense grid, or is there a more efficient strategy?



32 : COS429 : 29.09.16 : Andras Ferencz 

RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :
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RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



34 : COS429 : 29.09.16 : Andras Ferencz 

RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



35 : COS429 : 29.09.16 : Andras Ferencz 

RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example


6IN
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RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



14IN



37 : COS429 : 29.09.16 : Andras Ferencz 

How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose   so that a good point with noise is likely (e.g., prob=0.95) within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 117

7
modified from  M. Pollefeys

    se11log/p1logN 
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RANSAC conclusions
Good
• Robust to outliers
• Applicable for more degrees of freedom (DOFs: number of 

objective function parameters) than Hough transform
• Optimization parameters are easier to choose than Hough 

transform

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not great multiple fits

Common applications [next time]
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)
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