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Review: Feature Matching

1. Find a set of
distinctive key-
points

2. Define a region
around each

Fae e keypoint
N
WPl <k 3. Extract and

28 BN ag normalize the
‘ B A . region content

4. Compute a local
descriptor from the
normalized region

= 5. Match local
| descriptors



Matching ambiguity

Locally feature matches
are ambiguous

=> need to fit a model to
find globally consistent
matches




Model Fitting & Optimization

* Design challenges
— Design an appropriate model [next time]

* Enough degrees of freedom (DOFs) to allow good mapping
* As few DOFs as possible to enable good fitting

— Design a suitable goodness of fit measure between data and
model

* Similarity should reflect application goals

* Encode robustness to outliers and noise
— Design an optimization method to find parameters of model

* Avoid local optima

* Find best parameters quickly
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Goodness of Fit: Loss Function

Model: Input data W N Model Parameters
del
(I\e/lsciin?ateﬂ 2:]( (X ; @)
Loss Function:
A
L(Z;Z)
s X

Output data Estimated Output
Goal of Optimization:

argglinz L(Z;f(X;0))

Also know as: cost, objective function
Negative of loss: reward, profit, utility, fithess function
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1D Starter Example: Find the Vertical Edge




L
1D Starter Example: Find the Vertical Edge

[List of <x,y> coordinates]

dx = abs(conv2(im, [1 2 1]'x[-1 0 1]1/4, 'valid')); %dx filter
dxt = dx>=33; ’threshold at edge energy=33
[y,x]=find(dxt); % find x,y coordinate of thresholded points
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L ISI—~—————SS
Squared Loss (L2)
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Looking for a vertical line, so model is
2=f (©)=0 =xpos

Let's start with L2 (Squared, regression) loss:
A\ A\2
L<Zi;z)_<zi_z)
And find © such that sum(L)) is minimum.

This is the mean!

0.8 r




.
Absolute Value Loss (L1)

Looking for a vertical line, so model
2=f (©)=0 =xpos
Now try L1 (Absolute Value) loss:
L(z;2)=

And find © such that sum(L)) is minimum.

z,— 1|

This is the median!

L1

0.8 r
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L
Histogram

Looking for a vertical line, so model
2=f (©)=0 =xpos
How about just histogram and find maximum

most popular bin. You can think of this as an
impulse Loss:

L(x; 2)=(|x—%>y)
This is the mode!

Questions: what happens as you change the
bin size? What if you blur the bins of the
Histogram?
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More Robust Distance Loss Functions

-------
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Truncated L1:
L(z;2;y)=(min(|z-1,y))

BVA

Truncated L2:
L(Z ;2:'Y):(min(<z_2)2:yz))

BYE




More Robust Distance Loss Functions

Cauchy: L(Z;Q;O):
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Terminology
- M-estimators - minimize some function

other than L2




L
Search/Optimization Algorithms

Given a loss function, how do you find a minimum?

e Direct Methods:
» Least Squares fit (only for L2 norm)

e [terative Methods:
« Start at some (random) initial location, and then
« Gradient descent (1% order) (stochastic variants) [lot more on this
later]
 (Pseudo-) Newton methods (2™ order)
 lterated Re-weighted Least Squares
* Iterated closest point (ICP)

e Search (Hypothesize and test)
* Dense sampling (histogram, Hough transform)
« RANSAC
« Many other problem specific algorithms: Multi-grid, branch&bound,
etc.
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2D Example: Finding Straight Lines




I IS———————SSS
2D Example: Finding Straight Lines

Assume you know these points belong to a line.
How do your fit a line to it?




Least squares line fitting

16 :

*Data: (x,, »,), ..., (x,, 1)
Line equation: y, = mx, + b

*Find (m, b) to minimize

L :Z;(yi - mx; - b)2

I
ix,

=y'y- 2(Ap)'y +(Ap)' (Ap)

ak =2ATAp- 2ATy =0
dp

ATAp =ATy = p =(ATA) ATy

C0OS429 : 29.09.16 : Andras Ferencz

IDD : 0y, [
gumu g . 2
:DHbH-D 0 |Ap - ]
1 0.0
Matlab: p = A \ vy;

Modified from S. Lazebnik




...
QOutliers

* Least squares assumes Gaussian errors

* Qutliers: points with extremely low
probability of occurrence (according to
Gaussian statistics)

* Have strong influence on least squares
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...
Reminder: Robust Estimation

Goal: develop parameter estimation
methods insensitive to small numbers of
large errors

General approach: try to give large
deviations less weight

minimize some loss function
other than L2 [square of y—f(x,a,b,...) ]
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Iteratively Reweighted Least Squares

We can iteratively approximate L1

Approximation: convert to weighted least
sguares

Z‘yi- f(x,,a,b,...)

— 1 _ 2
= Z,-"yi-f(xi,a,b,...)‘(yi f(xl.,a,b,...))

= Ywly, - f(x,a,b,..))

with w, based on previous iteration
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I IS———————SSS
Approximating other Losses

Different options for weights to approximate

other Loss functions
— Avoid problems with infinities
— Give even less weight to outliers

1

" |yi- f(xa.b,.0) L,
w, = : i
i E+|y, - f(xl.,a,b,...)‘ Fair
1 :
w, = 5 Cauchy / Lorentzian
8+(yl.- f(xl.,a,b,...))
w. :e-k(yi-f(xi,a,b,...))2 WeISCh

1
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.
Summary: Least Squares

Ordinary Iterated Reweighted
+ Clearly specified objective + Allows more robust objectives
+ Optimization is easy + Better sensitive to limited
+ Finds global optimum number of outliers
- Loss is L2: may not be what you - [terative, more costly to optimize
want to optimize - Dependent on starting point: can
- Sensitive to outliers fall into local minima
- Hard to detect multiple objects, - Hard to detect multiple objects,
lines, etc. lines, etc.

Neither still solves
this problem:

how do we figure out that
these points belong
together?




2D Histogram

Recall what worked best in 1-D: Histogram!
Can we do the same thing, now for 2 DOFs? Rotate it...
Note: each edge point votes in each 1D histogram

Ry Uit
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.
Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Assemble the 1D histograms into a 2D
histogram: use a polar representation for the
parameter space

Hough space

xcos@ +ysmO =p
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.
Hough transform

features votes

24 : COS429 : 29.09.16 : Andras Ferencz Slide from S. Savarese



Hough transform - experiments

Noisy data

features votes

Need to ad'lust ﬁrid Size or smooth



Hough transform - experiments

features

votes

Issue: spurious peaks due to uniform noise
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Slide from S. Savarese



1. e -> Canny
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Slide from S. Savarese
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3. Hough votes -> Edges

N
A\ ki

Find peaks and post-process

)

'I-" -
=
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Another Hough transform example
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.
Analyzing the Hough transform

Think about parameterization & bin size
— Is the bin size uniform everywhere?

* Make it more robust: smoothing?

* Cost: O(mn + mp)
— Reduce using edge orientation?

* How to find multiple lines? Segments?
* Can you find a circle with Hough?
* What is the effect as #Dims increases?

* Hypothesize and test: Do we need to sample in such a
dense grid, or is there a more efficient strategy?



RANSAC

(RANdom SAmple Consensus) :
Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

Algorithm:

ample (random he number of points requi
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm: s O N, =14

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




R ———————————————
How to choose parameters?

* Number of samples N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e )

* Number of sampled points s
— Minimum number needed to fit the model

* Distance threshold 6

— Choose 9 so that a good point with noise is likely (e.g., prob=0.95) within threshold
— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

N =logl1- p)/log(l- (1- e)s)

proportion of outliers e
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S 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 §) 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 712
5 4 §) 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 117
moaiied frrom M. o7e eys



RANSAC conclusions

Good
e Robust to outliers

o Applicable for more degrees of freedom (DOFs: number of
objective function parameters) than Hough transform

« Optimization parameters are easier to choose than Hough
transform

Bad

« Computational time grows quickly with fraction of outliers
and number of parameters

« Not great multiple fits

Common applications [next time]
« Computing a homography (e.g., image stitching)
o Estimating fundamental matrix (relating two views)
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