Convolution and Filtering

COS 429: Computer Vision

Figure credits: S. Lazebnik, S. Seitz, K. Grauman, and M. Hebert
Local Neighborhoods

• Hard to tell anything from a single pixel
 – Example: you see a reddish pixel. Is this the object’s color? Illumination? Noise?

• The next step in order of complexity is to look at local neighborhood of a pixel
Linear Filters

• Given an image $In(x,y)$ generate a new image $Out(x,y)$:
 – For each pixel (x,y), $Out(x,y)$ is a specific linear combination of pixels in the neighborhood of $In(x,y)$

• This algorithm is
 – Linear in input values (intensities)
 – Shift invariant
Discrete Convolution

• This is the discrete analogue of convolution

\[f(x) \ast g(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt \]

• Pattern of weights = “filter kernel”

• Will be useful in smoothing, edge detection
Example: Smoothing

Original: Mandrill

Smoothed with Gaussian kernel
Gaussian Filters

- One-dimensional Gaussian
 \[G_1(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \]

- Two-dimensional Gaussian
 \[G_2(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2+y^2}{2\sigma^2}} \]
Gaussian Filters
Gaussian Filters
Gaussian Filters

- Gaussians are used because:
 - Smooth
 - Decay to zero rapidly
 - Simple analytic formula
 - Central limit theorem: limit of applying (most) filters multiple times is some Gaussian
 - Separable:

\[G_2(x, y) = G_1(x) G_1(y) \]
Computing Discrete Convolutions

\[Out(x, y) = \sum_{i=i_{\min}}^{i_{\max}} \sum_{j=j_{\min}}^{j_{\max}} f(i, j) \ In(x - i, y - j) \]

- What happens near edges of image?
 - Ignore (\textit{Out} is smaller than \textit{In})
 - Pad with zeros (edges get dark)
 - Replicate edge pixels
 - Wrap around
 - Reflect
 - Change filter
Computing Discrete Convolutions

\[Out(x, y) = \sum_{i=i_{\text{min}}}^{i_{\text{max}}} \sum_{j=j_{\text{min}}}^{j_{\text{max}}} f(i, j) \, In(x - i, y - j) \]

- What happens if kernel is infinite?
 - Truncate when filter falls off to near zero
 - For Gaussian, typical support between \(2\sigma\) and \(3\sigma\)

Source: K. Grauman
Computing Discrete Convolutions

\[Out(x, y) = \sum_{i=i_{\text{min}}}^{i_{\text{max}}} \sum_{j=j_{\text{min}}}^{j_{\text{max}}} f(i, j) \, In(x - i, y - j) \]

• How long does it take?
 – If \(\text{In} \) is \(n \times n \), \(f \) is \(m \times m \), naive computation takes time \(\mathcal{O}(m^2n^2) \)
 – OK for small filter kernels, bad for large ones
Fourier Transforms

- Define *Fourier transform* of function f as

$$F(\omega) = \mathcal{F}(f(x)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{i\omega x} \, dx$$

- F is a function of frequency – describes how much of each frequency is contained in f

- Fourier transform is invertible
Fourier Transform and Convolution

- Fourier transform turns convolution into multiplication:

\[\mathcal{F}(f(x) * g(x)) = \mathcal{F}(f(x)) \mathcal{F}(g(x)) \]
Fourier Transform and Convolution

• Useful application #1: Use frequency space to understand effects of filters
 – Example: Fourier transform of a Gaussian is a Gaussian
 – Thus: attenuates high frequencies
Fourier Transform and Convolution

- Useful application #2: Efficient computation
 - Fast Fourier Transform (FFT) takes time $O(n \log n)$
 - Thus, convolution can be performed in time $O(n \log n + m \log m)$
 - Greatest efficiency gains for large filters ($m \sim n$)
Alternative: Median Filtering

- A median filter operates over a window by selecting the median intensity in the window.
Median Filter

Salt-and-pepper noise

Median filtered

Credit: M. Hebert
Gaussian vs. Median filtering

Gaussian

Median
Edge Detection

Winter in Kraków photographed by Marcin Ryczek
Origin of Edges

- Edges are caused by a variety of factors:
 - depth discontinuity
 - surface color discontinuity
 - illumination discontinuity
 - surface normal discontinuity

Credit: Steve Seitz
Edge Detection

• Intuitively, much of semantic and shape information is available in the edges

• **Ideal**: artist’s line drawing (but artist is also using object-level knowledge)

• But what, **mathematically**, is an edge?

Credit: D. Lowe
What is an Edge?

Edge easy to find
What is an Edge?

Where is edge? Single pixel wide or multiple pixels?
What is an Edge?

Noise: have to distinguish noise from actual edge
What is an Edge?

Is this one edge or two?
What is an Edge?

Texture discontinuity
Formalizing Edge Detection

• Look for strong step edges

\[\frac{dI}{dx} > \tau \]

• One pixel wide: look for maxima in \(dI / dx \)

• Noise rejection: smooth (with a Gaussian) over a neighborhood of size \(\sigma \)
Canny Edge Detector

- Smooth
- Find derivative
- Find maxima
- Threshold
Canny Edge Detector

- First, smooth with a Gaussian of some width σ
Canny Edge Detector

- Next, find “derivative”
- What is derivative in 2D? Gradient:

\[\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \]
Canny Edge Detector

• Useful fact #1: differentiation “commutes” with convolution

\[\frac{df}{dx} * g = \frac{d}{dx}(f * g) = f * \frac{dg}{dx} \]

• Useful fact #2: Gaussian is separable:

\[G_2(x, y) = G_1(x) G_1(y) \]
Canny Edge Detector

• Thus, combine first two stages of Canny:

\[
\nabla (f(x, y) \ast G_2(x, y)) = \\
\begin{bmatrix}
\quad f(x, y) \ast (G'_1(x)G_1(y)) \\
\quad f(x, y) \ast (G_1(x)G'_1(y)) \\
\quad f(x, y) \ast G'_1(x) \ast G_1(y) \\
\quad f(x, y) \ast G_1(x) \ast G'_1(y)
\end{bmatrix}
\]
Canny Edge Detector

Original Image

Smoothed Gradient Magnitude
Canny Edge Detector

- **Nonmaximum suppression**
 - Eliminate all but local maxima in gradient magnitude (sqrt of sum of squares of \(x \) and \(y \) components)
 - At each pixel \(p \) look along direction of gradient:
 - if either neighbor is bigger, set \(p \) to zero
 - In practice, quantize direction to horizontal, vertical, and two diagonals
 - Result: “thinned edge image”
Canny Edge Detector

• Final stage: thresholding
• Simplest: use a single threshold
• Better: use two thresholds
 – Find chains of touching edge pixels, all $\geq \tau_{\text{low}}$
 – Each chain must contain at least one pixel $\geq \tau_{\text{high}}$
 – Helps eliminate dropouts in chains, without being too susceptible to noise
 – “Thresholding with hysteresis”
Canny Edge Detector

Original Image

Edges
Faster Edge Detectors

- Can build simpler, faster edge detector by omitting some steps:
 - No nonmaximum suppression
 - No hysteresis in thresholding
 - Simpler filters (approx. to gradient of Gaussian)

 - Sobel:
 \[
 \begin{pmatrix}
 1 & 0 & -1 \\
 2 & 0 & -2 \\
 1 & 0 & -1 \\
 \end{pmatrix}
 \begin{pmatrix}
 1 & 2 & 1 \\
 0 & 0 & 0 \\
 -1 & -2 & -1 \\
 \end{pmatrix}
 \]

 - Roberts:
 \[
 \begin{pmatrix}
 1 & 0 \\
 0 & -1 \\
 \end{pmatrix}
 \begin{pmatrix}
 0 & -1 \\
 1 & 0 \\
 \end{pmatrix}
 \]
Second-Derivative-Based Edge Detectors

• To find local maxima in derivative, look for zeros in second derivative

• Analogue in 2D: Laplacian

\[\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

• Marr-Hildreth edge detector
As before, combine Laplacian with Gaussian smoothing: Laplacian of Gaussian (LOG)
• As before, combine Laplacian with Gaussian smoothing: Laplacian of Gaussian (LOG)
LOG vs. DOG

- Laplacian of Gaussian sometimes approximated by Difference of Gaussians

\[
\nabla^2 G_1(x, \sigma) = \sqrt{2} \left[G_1(x, \sigma\sqrt{2}) - G_1(x, \sigma/\sqrt{2}) \right]
\]
Problems with Laplacian Edge Detectors

- Distinguishing local minimum vs. maximum
- Symmetric – poor performance near corners
- Sensitive to noise
 - Higher-order derivatives = greater noise sensitivity
 - Combines information along edge, not just perpendicular
Image gradients vs. meaningful contours

- Berkeley segmentation database:
 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
Data-Driven Edge Detection

Input images

Ground truth

Output

Training data

P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013