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Agenda

e General observations

* Assignment 3: an example in designing an
implementation

* Assignment 4: expanding on the example
e Assignment 5: avoiding common pitfalls



On incremental assighments

 We hear you: not having solutions to earlier
assignments when later assighments depend
on them is hard

* Beating the dead horse:

— This reflects the reality more often than not in
software engineering

— This is also a forcing mechanism to really
understand a distributed system and how to make
good design choices



#1 reason for struggle: repeating
logic

* Some examples
— Using multiple state variables for one state

— Handling heartbeat and AppendEntries are
different (more relevant for A4)

— Start new election from Candidate and Follower
are different

— Resetting timers



We don’t want our code to be

. difficult to change; need to touch many
places to make simple changes

: changes break system in unexpected
ways

: hard to reuse logic / code

These adjectives caused people a lot of pain!
We’ll revisit throughout this precept



Assignment 3



Why are we going over A3 again?

 Should be review

* We spend a lot of time in class describing
systems

* You spend a lot of time in assighments
implementing systems

* A quick (and simpler) example of how we go
from a system description to system
implementation

* There are many possible implementations!



Reasoning about state

* Assignment 3 asks us to implement a state
machine (i.e., elections)

* Each raft server has a ‘state’ (Follower,
Candidate, Leader)

e Raft server can change state according to
certain rules



Reasoning about state
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Reasoning about state

e What additional state must each server hold?
— currentTerm
— votedFor

* We will also assume each server has a Timer
object, but there are other implementations
to handle timeouts (e.g., timeout loops)



Reasoning about transitions
(Follower)

* How can we become a follower?

— When we first start

— When we receive an RPC from a server with a
higher currentTerm

* Followers can only become candidates
(directly, anyway)



Reasoning about transitions
(Candidate)

* How can we become a candidate?

— When we are a follower and haven’t received a
heartbeat from a leader within the election
timeout

— When we are a candidate and haven’t been voted
leader or heard from a leader within the election

timeout
* Candidates can become any of Follower,
Candidate, or Leader



Reasoning about transitions
(Leader)

* How can we become a leader?

— When we are candidate and if we receive votes
from majority of servers within election timeout

e Leader can become Follower

— If we see a server with a higher term

— Typically happens after we die or there is a
partition



When do we change state?

* Thereis a timeout
— Follower -> Candidate
— Candidate -> Candidate
* We receive an RPC
— Leader -> Follower
— Candidate -> Follower
* We handle a response to an RPC
— Leader -> Follower
— Candidate -> Leader
— Candidate -> Follower



Our code should reflect!

* Timing out

* Create a timer if there isn’t one (i.e., when we Make) and start goroutine to call
handleTimer whenever there is timeout

* Set timeout to heartbeat interval if we are leader, to randomized election interval if
we are not (note, the same whether we are Follower or Candidate)

* |If leader, call sendAppendEntries

* Otherwise, become candidate (note this logic is the same if we are Follower or
Candidate)

* Receiving an RPC

: specified in paper (don’t need to implement the whole
thing)

: specified in paper (don’t need to implement the
whole thing)



Our code should reflect!

 Handling RPC responses
: specified in paper (don’t need to
implement the whole thing)
: specified in paper (don’t need to
implement the whole thing)

* Sending RPCs

: send RequestVote in separate goroutine to each
server; call handleRequestVoteResponse on response

: send AppendEntries in separate goroutine to
each server; call handleAppendEntriesResponse on response



Some details (assuming
architecture in previous slides)

* Resetting timer
— When we start
— Whenever we handle timeout
— Whenever we change state
* Locking / unlocking (when do we modify state?)
— When we handle timeout
— When we receive an RPC
— When we handle a single RPC response
e Resetting votedFor to null (or -1)
— When we become follower except in AppendEntries



Assignment 4



High-level overview

e Assume architecture from earlier slides

e Partl

— Modify all functions involving volatile state or the
log (basically everything except Timer stuff)

* Partll
— Correctly handle persistent state



Part I: sendRequestVote

* May have already done for A3

* Set RPC arguments

— |lastLogIindex: length of the candidate’s log (index
of candidate’s last log entry)

— lastLogTerm: if we have more than one entry, term
of the last log entry




Part I: RequestVote

* Need to add check that the candidate’s log is
at least as up-to-date as receiver’s log

* See section 5.4.1 in original paper for details



Part |:
handleRequestVoteResponse

* If we become leader, initialize nextindex and
matchindex

— nextindex: initialize to the length of the leader’s
log (leader last log index + 1)

— matchindex: initialize to 0 (why?)



Part I: sendAppendEntries

 Which log index should we send to followers?

* |f our last log index is greater than or equal to
the nextIndex for a follower, send
AppendEntries RPC with log entries starting at
nextindex



Part I: AppendEntries

Receiver implementation:

min(leaderCommit, index of last new entry)

i 2. Reply false if log doesn’t contain an entry at preVLogIndexi
| whose term matches prevLogTerm (§5.3) i
i 3. If an existing entry conflicts with a new one (same index |
i but different terms), delete the existing entry and all that i
| follow 1t (§5.3) i
i 4.  Append any new entries not already in the log i
i 5. IfleaderCommit > commitIndex, set commitIndex = |
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Part |:
handleAppendEntriesResponse

If last log index > nextIndex for a follower: send

te If successful: update nextIndex and matchIndex for
follower (§5.3)

* If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

If there exists an N such that N > commitIndex, a majorit
of matchlndex[1] > N, and log[N].term == currentTerm:

set commitlndex = N (§5.3, §5.4).

ST « F——



Part ll: persisting state

* Only need to read from persistent storage in Make

* Persist whenever we change currentTerm, votedFor, or log;
easy, right?

* This becomes hard if similar logic is sprinkled throughout your
code. Besides in Make,

— log changes in AppendEntries

— votedFor changes during elections and in AppendEntries
receive/handle response

— currentTerm changes whenever we become Follower

 Not required, but for completeness

— Should persist before changing in memory; most people did not do
this (note that you do need to persist before responding to RPCs!)



Some details

* Locking / unlocking (when do we modify state?)
— When we handle timeout
— When we receive an RPC
— When we handle a single RPC response
— Start, Kill

* Jog, matchlndex, nextindex

— You should reason about the state of these arrays just as we did for
Assignment 3!

— Many people just started implementing by translating Figure 2 into
code; without understanding, debugging will be much harder!



Assignment 5



High-level overview

* Should only depend on public Raft API

e Part |: implement Put(key, value), Append(key,
value), Get(key)

— Must have sequential consistency!

e Part 2: handling failures

— Deal with duplicate requests



common.go

e Should be relatively quick!
 What additional field(s) do we need to put in PutAppendArgs?

PutAppendArgs

Key
Value
Op

 What about GetArgs?
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client.go

 We just need to properly construct the RPCs
to the server

— Get
— PutAppend

* These should follow easily once we have the
Arg structures from common.go



server.go

* The hard part ©



Debugging



General tips

Go debugging isn’t great

If you use print statements, make sure you use
unbuffered output (i.e., use stderr)

Use go’s playground: https://play.golang.org/

Create subsets of the evaluation tests

Test incrementally:

— Think about invariants and create appropriate
tests



Go slow to go fast



