Raft assignments

f| ver [Nov (8
TES | TAM
fi| N [TvM|f]

COS 418: Distributed Systems
Precept 9

Themis Melissaris and Daniel Suo

Agenda

e General observations

* Assignment 3: an example in designing an
implementation

* Assignment 4: expanding on the example
e Assignment 5: avoiding common pitfalls

On incremental assighments

 We hear you: not having solutions to earlier
assignments when later assighments depend
on them is hard

* Beating the dead horse:

— This reflects the reality more often than not in
software engineering

— This is also a forcing mechanism to really
understand a distributed system and how to make
good design choices

#1 reason for struggle: repeating
logic

* Some examples
— Using multiple state variables for one state

— Handling heartbeat and AppendEntries are
different (more relevant for A4)

— Start new election from Candidate and Follower
are different

— Resetting timers

We don’t want our code to be

. difficult to change; need to touch many
places to make simple changes

: changes break system in unexpected
ways

: hard to reuse logic / code

These adjectives caused people a lot of pain!
We’ll revisit throughout this precept

Assignment 3

Why are we going over A3 again?

 Should be review

* We spend a lot of time in class describing
systems

* You spend a lot of time in assighments
implementing systems

* A quick (and simpler) example of how we go
from a system description to system
implementation

* There are many possible implementations!

Reasoning about state

* Assignment 3 asks us to implement a state
machine (i.e., elections)

* Each raft server has a ‘state’ (Follower,
Candidate, Leader)

e Raft server can change state according to
certain rules

Reasoning about state

times out,
startsup times out, new election
starts election

Followerg—\4

discovers current
leader or new term

receives votes from
majority of servers

Candidate{(\;eader)

_

discovers server
with higher term

Reasoning about state

e What additional state must each server hold?
— currentTerm
— votedFor

* We will also assume each server has a Timer
object, but there are other implementations
to handle timeouts (e.g., timeout loops)

Reasoning about transitions
(Follower)

* How can we become a follower?

— When we first start

— When we receive an RPC from a server with a
higher currentTerm

* Followers can only become candidates
(directly, anyway)

Reasoning about transitions
(Candidate)

* How can we become a candidate?

— When we are a follower and haven’t received a
heartbeat from a leader within the election
timeout

— When we are a candidate and haven’t been voted
leader or heard from a leader within the election

timeout
* Candidates can become any of Follower,
Candidate, or Leader

Reasoning about transitions
(Leader)

* How can we become a leader?

— When we are candidate and if we receive votes
from majority of servers within election timeout

e Leader can become Follower

— If we see a server with a higher term

— Typically happens after we die or there is a
partition

When do we change state?

* Thereis a timeout
— Follower -> Candidate
— Candidate -> Candidate
* We receive an RPC
— Leader -> Follower
— Candidate -> Follower
* We handle a response to an RPC
— Leader -> Follower
— Candidate -> Leader
— Candidate -> Follower

Our code should reflect!

* Timing out

* Create a timer if there isn’t one (i.e., when we Make) and start goroutine to call
handleTimer whenever there is timeout

* Set timeout to heartbeat interval if we are leader, to randomized election interval if
we are not (note, the same whether we are Follower or Candidate)

* |If leader, call sendAppendEntries

* Otherwise, become candidate (note this logic is the same if we are Follower or
Candidate)

* Receiving an RPC

: specified in paper (don’t need to implement the whole
thing)

: specified in paper (don’t need to implement the
whole thing)

Our code should reflect!

 Handling RPC responses
: specified in paper (don’t need to
implement the whole thing)
: specified in paper (don’t need to
implement the whole thing)

* Sending RPCs

: send RequestVote in separate goroutine to each
server; call handleRequestVoteResponse on response

: send AppendEntries in separate goroutine to
each server; call handleAppendEntriesResponse on response

Some details (assuming
architecture in previous slides)

* Resetting timer
— When we start
— Whenever we handle timeout
— Whenever we change state
* Locking / unlocking (when do we modify state?)
— When we handle timeout
— When we receive an RPC
— When we handle a single RPC response
e Resetting votedFor to null (or -1)
— When we become follower except in AppendEntries

Assignment 4

High-level overview

e Assume architecture from earlier slides

e Partl

— Modify all functions involving volatile state or the
log (basically everything except Timer stuff)

* Partll
— Correctly handle persistent state

Part I: sendRequestVote

* May have already done for A3

* Set RPC arguments

— |lastLogIindex: length of the candidate’s log (index
of candidate’s last log entry)

— lastLogTerm: if we have more than one entry, term
of the last log entry

Part I: RequestVote

* Need to add check that the candidate’s log is
at least as up-to-date as receiver’s log

* See section 5.4.1 in original paper for details

Part |:
handleRequestVoteResponse

* If we become leader, initialize nextindex and
matchindex

— nextindex: initialize to the length of the leader’s
log (leader last log index + 1)

— matchindex: initialize to 0 (why?)

Part I: sendAppendEntries

 Which log index should we send to followers?

* |f our last log index is greater than or equal to
the nextIndex for a follower, send
AppendEntries RPC with log entries starting at
nextindex

Part I: AppendEntries

Receiver implementation:

min(leaderCommit, index of last new entry)

i 2. Reply false if log doesn’t contain an entry at preVLogIndexi
| whose term matches prevLogTerm (§5.3) i
i 3. If an existing entry conflicts with a new one (same index |
i but different terms), delete the existing entry and all that i
| follow 1t (§5.3) i
i 4. Append any new entries not already in the log i
i 5. IfleaderCommit > commitIndex, set commitIndex = |

24

Part |:
handleAppendEntriesResponse

If last log index > nextIndex for a follower: send

te If successful: update nextIndex and matchIndex for
follower (§5.3)

* If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

If there exists an N such that N > commitIndex, a majorit
of matchlndex[1] > N, and log[N].term == currentTerm:

set commitlndex = N (§5.3, §5.4).

ST « F——

Part ll: persisting state

* Only need to read from persistent storage in Make

* Persist whenever we change currentTerm, votedFor, or log;
easy, right?

* This becomes hard if similar logic is sprinkled throughout your
code. Besides in Make,

— log changes in AppendEntries

— votedFor changes during elections and in AppendEntries
receive/handle response

— currentTerm changes whenever we become Follower

 Not required, but for completeness

— Should persist before changing in memory; most people did not do
this (note that you do need to persist before responding to RPCs!)

Some details

* Locking / unlocking (when do we modify state?)
— When we handle timeout
— When we receive an RPC
— When we handle a single RPC response
— Start, Kill

* Jog, matchlndex, nextindex

— You should reason about the state of these arrays just as we did for
Assignment 3!

— Many people just started implementing by translating Figure 2 into
code; without understanding, debugging will be much harder!

Assignment 5

High-level overview

* Should only depend on public Raft API

e Part |: implement Put(key, value), Append(key,
value), Get(key)

— Must have sequential consistency!

e Part 2: handling failures

— Deal with duplicate requests

common.go

e Should be relatively quick!
 What additional field(s) do we need to put in PutAppendArgs?

PutAppendArgs

Key
Value
Op

 What about GetArgs?

30

client.go

 We just need to properly construct the RPCs
to the server

— Get
— PutAppend

* These should follow easily once we have the
Arg structures from common.go

server.go

* The hard part ©

Debugging

General tips

Go debugging isn’t great

If you use print statements, make sure you use
unbuffered output (i.e., use stderr)

Use go’s playground: https://play.golang.org/

Create subsets of the evaluation tests

Test incrementally:

— Think about invariants and create appropriate
tests

Go slow to go fast

