
Raft assignments

COS 418: Distributed Systems
Precept 9

Themis Melissaris and Daniel Suo



Agenda

• General	observations
• Assignment	3:	an	example	in	designing	an	
implementation

• Assignment	4:	expanding	on	the	example
• Assignment	5:	avoiding	common	pitfalls

2



On	incremental	assignments

• We	hear	you:	not	having	solutions	to	earlier	
assignments	when	later	assignments	depend	
on	them	is	hard

• Beating	the	dead	horse:
– This	reflects	the	reality	more	often	than	not	in	
software	engineering

– This	is	also	a	forcing	mechanism	to	really	
understand	a	distributed	system	and	how	to	make	
good	design	choices

3



#1	reason	for	struggle:	repeating	
logic
• Some	examples

– Using	multiple	state	variables	for	one	state
– Handling	heartbeat	and	AppendEntries are	
different	(more	relevant	for	A4)

– Start	new	election	from	Candidate	and	Follower	
are	different

– Resetting	timers

4



We	don’t	want	our	code	to	be

• Rigid:	difficult	to	change;	need	to	touch	many	
places	to	make	simple	changes

• Fragile:	changes	break	system	in	unexpected	
ways

• Immobile:	hard	to	reuse	logic	/	code

These	adjectives	caused	people	a	lot	of	pain!	
We’ll	revisit	throughout	this	precept

5



Assignment	3

6



Why	are	we	going	over	A3	again?

• Should	be	review
• We	spend	a	lot	of	time	in	class	describing	
systems

• You	spend	a	lot	of	time	in	assignments	
implementing	systems

• A	quick	(and	simpler)	example	of	how	we	go	
from	a	system	description	to	system	
implementation

• There	are	many	possible	implementations!
7



Reasoning	about	state

• Assignment	3	asks	us	to	implement	a	state	
machine	(i.e.,	elections)

• Each	raft	server	has	a	‘state’	(Follower,	
Candidate,	Leader)

• Raft	server	can	change	state	according	to	
certain	rules	

8



Reasoning	about	state

9



Reasoning	about	state

• What	additional	state	must	each	server	hold?
– currentTerm
– votedFor

• We	will	also	assume	each	server	has	a	Timer	
object,	but	there	are	other	implementations	
to	handle	timeouts	(e.g.,	timeout	loops)

10



Reasoning	about	transitions	
(Follower)
• How	can	we	become	a	follower?

– When	we	first	start
– When	we	receive	an	RPC	from	a	server	with	a	
higher	currentTerm

• Followers	can	only	become	candidates	
(directly,	anyway)

11



Reasoning	about	transitions	
(Candidate)
• How	can	we	become	a	candidate?

– When	we	are	a	follower	and	haven’t	received	a	
heartbeat	from	a	leader	within	the	election	
timeout

– When	we	are	a	candidate	and	haven’t	been	voted	
leader	or	heard	from	a	leader	within	the	election	
timeout

• Candidates	can	become	any	of	Follower,	
Candidate,	or	Leader

12



Reasoning	about	transitions	
(Leader)
• How	can	we	become	a	leader?

– When	we	are	candidate	and	if	we	receive	votes	
from	majority	of	servers	within	election	timeout

• Leader	can	become	Follower
– If	we	see	a	server	with	a	higher	term
– Typically	happens	after	we	die	or	there	is	a	
partition

13



When	do	we	change	state?
• There	is	a	timeout

– Follower	->	Candidate
– Candidate	->	Candidate

• We	receive	an	RPC
– Leader	->	Follower
– Candidate	->	Follower

• We	handle	a	response	to	an	RPC
– Leader	->	Follower
– Candidate	->	Leader
– Candidate	->	Follower

14



Our	code	should	reflect!
• Timing	out

– resetTimer
• Create	a	timer	if	there	isn’t	one	(i.e.,	when	we	Make)	and	start	goroutine to	call	

handleTimer whenever	there	is	timeout
• Set	timeout	to	heartbeat	interval	if	we	are	leader,	to	randomized	election	interval	if	

we	are	not	(note,	the	same	whether	we	are	Follower	or	Candidate)

– handleTimer
• If	leader,	call	sendAppendEntries
• Otherwise,	become	candidate	(note	this	logic	is	the	same	if	we	are	Follower	or	

Candidate)

• Receiving	an	RPC
– RequestVote:	specified	in	paper	(don’t	need	to	implement	the	whole	

thing)
– AppendEntries:	specified	in	paper	(don’t	need	to	implement	the	

whole	thing)
15



Our	code	should	reflect!
• Handling	RPC	responses

– handleRequestVoteResponse:	specified	in	paper	(don’t	need	to	
implement	the	whole	thing)

– handleAppendEntriesResponse:	specified	in	paper	(don’t	need	to	
implement	the	whole	thing)

• Sending	RPCs
– sendRequestVote:	send	RequestVote in	separate	goroutine to	each	

server;	call	handleRequestVoteResponse on	response
– sendAppendEntries:	send	AppendEntries in	separate	goroutine to	

each	server;	call	handleAppendEntriesResponse on	response

16



Some	details	(assuming	
architecture	in	previous	slides)
• Resetting	timer

– When	we	start
– Whenever	we	handle	timeout
– Whenever	we	change	state

• Locking	/	unlocking	(when	do	we	modify	state?)
– When	we	handle	timeout
– When	we	receive	an	RPC
– When	we	handle	a	single	RPC	response

• Resetting	votedFor to	null	(or	-1)
– When	we	become	follower	except	in	AppendEntries

17



Assignment	4

18



High-level	overview

• Assume	architecture	from	earlier	slides
• Part	I

– Modify	all	functions	involving	volatile	state	or	the	
log	(basically	everything	except	Timer	stuff)

• Part	II
– Correctly	handle	persistent	state

19



Part	I:	sendRequestVote

• May	have	already	done	for	A3
• Set	RPC	arguments

– lastLogIndex:	length	of	the	candidate’s	log	(index	
of	candidate’s	last	log	entry)

– lastLogTerm:	if	we	have	more	than	one	entry,	term	
of	the	last	log	entry

20



Part	I:	RequestVote

• Need	to	add	check	that	the	candidate’s	log	is	
at	least	as	up-to-date	as	receiver’s	log

• See	section	5.4.1	in	original	paper	for	details

21



Part	I:	
handleRequestVoteResponse
• If	we	become	leader,	initialize	nextIndex and	
matchIndex
– nextIndex:	initialize	to	the	length	of	the	leader’s	
log	(leader	last	log	index	+	1)

– matchIndex:	initialize	to	0	(why?)

22



Part	I:	sendAppendEntries

23

• Which	log	index	should	we	send	to	followers?
• If	our	last	log	index	is	greater	than	or	equal	to	
the	nextIndex for	a	follower,	send	
AppendEntries RPC	with	log	entries	starting	at	
nextIndex



Part	I:	AppendEntries

24



Part	I:	
handleAppendEntriesResponse

25



Part	II:	persisting	state
• Only	need	to	read	from	persistent	storage	in	Make
• Persist	whenever	we	change	currentTerm,	votedFor,	or	log;	

easy,	right?
• This	becomes	hard	if	similar	logic	is	sprinkled	throughout	your	

code.	Besides	in	Make,
– log	changes	in	AppendEntries
– votedFor changes	during	elections	and	in	AppendEntries

receive/handle	response
– currentTerm changes	whenever	we	become	Follower

• Not	required,	but	for	completeness
– Should	persist	before	changing	in	memory;	most	people	did	not	do	

this	(note	that	you	do	need	to	persist	before	responding	to	RPCs!)

26



Some	details
• Locking	/	unlocking	(when	do	we	modify	state?)

– When	we	handle	timeout
– When	we	receive	an	RPC
– When	we	handle	a	single	RPC	response
– Start,	Kill

• log,	matchIndex,	nextIndex
– You	should	reason	about	the	state	of	these	arrays	just	as	we	did	for	

Assignment	3!
– Many	people	just	started	implementing	by	translating	Figure	2	into	

code;	without	understanding,	debugging	will	be	much	harder!

27



Assignment	5

28



High-level	overview

• Should	only	depend	on	public	Raft	API
• Part	I:	implement	Put(key,	value),	Append(key,	
value),	Get(key)
– Must	have	sequential	consistency!

• Part	2:	handling	failures
– Deal	with	duplicate	requests

29



common.go
• Should	be	relatively	quick!
• What	additional	field(s)	do	we	need	to	put	in	PutAppendArgs?

• What	about	GetArgs?

30



client.go

• We	just	need	to	properly	construct	the	RPCs	
to	the	server
– Get
– PutAppend

• These	should	follow	easily	once	we	have	the	
Arg structures	from	common.go

31



server.go

• The	hard	part	J

32



Debugging

33



General	tips

• Go	debugging	isn’t	great
• If	you	use	print	statements,	make	sure	you	use	
unbuffered	output	(i.e.,	use	stderr)

• Use	go’s	playground:	https://play.golang.org/
• Create	subsets	of	the	evaluation	tests
• Test	incrementally:

– Think	about	invariants	and	create	appropriate	
tests

34



Go	slow	to	go	fast

35


