
Chandy-Lamport Snapshotting

COS 418: Distributed Systems
Precept 8

Themis Melissaris and Daniel Suo

[Content adapted from I. Gupta]



Agenda

• What	are	global	snapshots?
• The	Chandy-Lamport algorithm
• Why	does	Chandy-Lamport work?

2



Global	snapshots

3



Example	of	a	global	snapshot

4



But	that	was	easy

• In	our	system	of	world	leaders,	we	were	able	
to	capture	their	‘state’	(i.e.,	likeness)	easily
– Synchronized	in	space
– Synchronized	in	time

• How	would	we	take	a	global	snapshot	if	the	
leaders	were	all	at	home?

• What	if	Obama	told	Trudeau	that	he	should	
really	put	on	a	shirt?

• This	message	is	part	of	our	system	state!
5



Global	snapshot	is	global	state

• Each	distributed	application	has	a	number	of	
processes	(leaders)	running	on	a	number	of	
physical	servers

• These	processes	communicate	with	each	
other	via	channels	(text	messaging)

• A	snapshot captures	the	local	states	of	each	
process	(e.g.,	program	variables)	along	with	
the	state	of	each	communication	channel

6



Why	do	we	need	snapshots?

• Checkpointing:	restart	if	the	application	fails
• Collecting	garbage:	remove	objects	that	don’t	
have	any	references

• Detecting	deadlocks:	can	examine	the	current	
application	state

• Other	debugging:	a	little	easier	to	work	with	
than	printf…

7



We	could	just	synchronize	clocks

• Each	process	records	state	at	time	some	
agreed	upon	t
– But	clocks	skew
– And	we	wouldn’t	record	messages

• Do	we	need	synchronization?
• What	did	Lamport realize	about	ordering	
events?

8



• Two	processes:	P1	and	P2

Example	of	global	snapshots	v2

9

P1 P2



• Channel	C12 from	P1	to	P2
• Channel	C21 from	P2	to	P1

Example	of	global	snapshots	v2

10

P1 P2

C12

C21



• Process	states	for	P1	and	P2

Example	of	global	snapshots	v2

11

P1 P2

C12

C21

X:	0
Y:	0
Z:	0

X:	1
Y:	2
Z:	3



• Channel	states	(i.e.,	messages)	for	C12	and	C21
• This	is	our	initial	global	state
• Also	a	global	snapshot

Example	of	global	snapshots	v2

12

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	1
Y2:	2
Z2:	3



• P1 tells	P2 to	change	its	state	variable,	X2,	from	
1	to	4

• This	is	another	global	snapshot

Example	of	global	snapshots	v2

13

P1 P2

C12:	[X2 → 4]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	1
Y2:	2
Z2:	3



• P2 receives	the	message	from	P1
• Another	global	snapshot

Example	of	global	snapshots	v2

14

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	1
Y2:	2
Z2:	3

X2 → 4



• P2 changes	its	state	variable,	X2,	from	1	to	4
• And	another	global	snapshot

Example	of	global	snapshots	v2

15

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3



• The	global	state	changes	whenever	an	event	
happens
– Process	sends	message
– Process	receives	message
– Process	takes	a	step

• Moving	from	state	to	state	obeys	causality

Summary

16



Chandy-Lamport algorithm

17



• Problem:	record	a	global	snapshot	(state	for	
each	process	and	channel)

• Model
– N processes	in	the	system	with	no	failures
– There	are	two	FIFO	unidirectional	channels	
between	every	process	pair	(Pi →	Pj and	Pj →	Pi)

– All	messages	arrive,	intact,	not	duplicated
• Future	work	relaxes	these	assumptions

System	model

18



• Taking	a	snapshot	shouldn’t	interfere	with	
normal	application	behavior
– Don’t	stop	sending	messages
– Don’t	stop	the	application!

• Each	process	can	record	its	own	state
• Collect	state	in	a	distributed	manner
• Any	process	can	initiate	a	snapshot

System	requirements

19



• Let’s	say	process	Pi initiates	the	snapshot
• Pi records	its	own	state	and	prepares	a	special	
marker	message	(distinct	from	application	
messages)

• Send	the	marker	message	to	all	other	
processes	(using	N-1 outbound	channels)

• Start	recording	all	incoming	messages	from	
channels	Cji for	j not	equal	to	i

Initiating	a	snapshot

20



• For	all	processes	Pj (including	the	initiator),	
consider	a	message	on	channel	Ckj

• If	we	see	marker	message	for	the	first	time
– Pj records	own	state	and	marks	Ckj as	empty
– Send	the	marker	message	to	all	other	processes	
(using	N-1 outbound	channels)

– Start	recording	all	incoming	messages	from	
channels	Clj for	l not	equal	to	j	or	k

• Else	add	all	messages	from	inbound	channels	
since	we	began	recording	to	their	states

Propagating	a	snapshot

21



• All	processes	have	received	a	marker	(and	
recorded	their	own	state)

• All	processes	have	received	a	marker	on	all	the	
N-1 incoming	channels	(and	recorded	their	
states)

• Later,	a	central	server	can	gather	the	partial	
state	to	build	a	global	snapshot

Terminating	a	snapshot

22



• P1 initiates	a	snapshot

Example

23

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3



• First,	P1 records	its	state

Example

24

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3



• Then,	P1 sends	a	marker	message	to	P2 and	
begins	recording	all	messages	on	inbound	
channels

• Meanwhile,	P2 sent	a	message	to	P1

Example

25

P1 P2

C12:	[<marker>]

C21:	[M1]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3



• P2 receives	a	marker	message	for	the	first	
time,	so	records	its	state

• P2 then	sends	a	marker	message	to	P1

Example

26

P1 P2

C12:	[Empty]

C21:	[<marker>]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3

<marker>

M1



• P1 has	already	sent	a	marker	message,	so	it	
records	all	messages	it	received	on	inbound	
channels	to	the	appropriate	channel’s	state

Example

27

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3

M1



• Both	processes	have	recorded	their	state	and	
all	the	state	of	all	incoming	channels

• Our	snapshotted	state	is	highlighted	in	blue

Example

28

P1 P2

C12:	[Empty]

C21:	[Empty]

X1:	0
Y1:	0
Z1:	0

X2:	4
Y2:	2
Z2:	3

M1



Reasoning	about	the	Chandy-
Lamport algorithm

29



• Related	to	the	Lamport clock	partial	ordering
• An	event	is	presnapshot if	it	occurs	before	the	
local	snapshot	on	a	process

• Postsnapshot if	afterwards
• If	event	A happens	causally	before	event	B,	
and	B is	presnapshot,	then	A is	too

Causal	consistency

30



• If	A and	B happen	on	the	same	process,	then	
this	is	trivially	true

• Consider	when	A is	the	send	and	B is	the	
corresponding	receive	event	on	processes	p
and	q,	respectively
– Since	B is	presnapshot,	q can’t	have	received	a	
marker	and	p can’t	have	sent	a	marker

– Amust	also	happen	presnapshot
• Similar	logic	for	A happening	postsnapshot

Proof

31



• In	order	for	an	application	message	m in	the	
channel	from	process	p to	process	q to	be	in	
the	snapshot
– Must	happen	after	q has	received	its	first	marker
– Before	p has	sent	its	marker	to	q

• A	message	m will	only	be	in	the	snapshot	if	
the	sending	process	was	presnapshot and	the	
receiving	process	was	postsnapshot

Poking	the	proof:	Part	I

32



• How	do	we	order	concurrent	events?
– Remember,	all	processes	communicate

• What	if	a	process	receives	a	marker	in	
between	sending	a	marker	and	some	event?
– These	should	happen	atomically

• What	if	something	happens	on	a	process	
independently	of	messages	after	the	wall-
clock	time	of	when	the	snapshot	starts?
– Snapshots	are	causally	consistent

Poking	the	proof:	Part	II

33



Monday	topic:
Streaming	Data	Processing

34


