
Consensus
Two-Phase Commit and Paxos

COS 418: Distributed Systems
Precept 3

Themis Melissaris and Daniel Suo
Acknowledgements: Kyle Jamieson, Mike Freedman, Irene Zhang



• Why are distributed systems hard? (1 min)

• Two-phase commit review (10 min)

• Paxos review (15 min)
– Activity: working out examples (25 min)

• Assignment 1 poll (1 min)

2

Plan



• We tend to think in a single thread
– But at each step, so many different cases!

• Hard to learn a new mental model and then 
immediately try to poke holes
– But that’s exactly what we do; try to understand the 

fault tolerance

• Solution?
– Take things slowly; trace one ‘run’ at a time and save 

each ‘what-if’ for the next run you reason through
– More formal methods you can read about

3

Why are distributed systems hard?



Two-phase commit review

4



Multiple servers agree on some action despite failures 
with the following properties:

1. Safety
– If one commits, no one aborts
– If one aborts, no one commits

2. Liveness
– If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP

5

Goals



• Client: the machine requesting some action to be 
taken

• Master: coordinates multiple nodes via the 2PC 
protocol

• Node: machine that takes the action

6

The actors



• Prepare: master asks if all nodes can commit to 
an action or not

• Commit: if all nodes respond yes during the 
prepare phase, the master tells all nodes to 
commit

7

The phases



• No reply: I was expecting a message, but didn’t 
get it
– Solve with timeouts

• Reboot: I crashed and now must recover
– Solve with write-ahead logs

Note: from the perspective of other nodes, timeouts 
and crashes look the same, but a node that crashes 
has to remember some state

8

What could go wrong?



• We’ve identified two kinds of errors and two strategies for 
resolving them

• However, we still must enumerate all the failure scenarios

• Determine how to use our strategies appropriately to 
guarantee our properties

• This is what all the text from Monday was about!

• Of course, try as we might, there could be error 
categories we haven’t thought about yet…

9

Reasoning about fault tolerance –
Take 2



Two-phase commit:

No failure

10



1. C à TC: “go!”

Client issues request

Client C

Transaction 
Coordinator TC

go!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

TC tells nodes to prepare

Client C

Transaction 
Coordinator TC

prepare! prepare!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à P: “yes” or “no”

Nodes respond that they are ready to 
commit

Client C

Transaction 
Coordinator TC

A B



commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à P: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

TC tells nodes to commit 

Client C

Transaction 
Coordinator TC

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à P: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC à C: “okay” or “failed”

• A, B commit on receipt of commit 
message

Nodes commit and TC tells client all is well

Client C

Transaction 
Coordinator TC

A B

okay



Two-phase commit:

Node crashes before responding

16



1. C à TC: “go!”

Client issues request

Client C

Transaction 
Coordinator TC

go!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

TC tells nodes to prepare

Client C

Transaction 
Coordinator TC

prepare! prepare!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A à P: “yes” or “no”, B crashes

Node B crashes and only Node A responds 
(how should we use our two solutions?)

Client C

Transaction 
Coordinator TC

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A à P: “yes” or “no”, B crashes

4. TC: times out

TC waits on B until some timeout period

Client C

Transaction 
Coordinator TC

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A à P: “yes” or “no”, B crashes

4. TC: times out

5. TC àA: “abort!”

TC tells nodes to prepare

Client C

Transaction 
Coordinator TC

abort!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A à P: “yes” or “no”, B crashes

4. TC: times out

5. TC àA: “abort!”

6. Bà TC: “decision?”

When B recovers, check with TC for 
decision (how does B know to check?)

Client C

Transaction 
Coordinator TC

A B

decision?



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A à P: “yes” or “no”, B crashes

4. TC: times out

5. TC àA: “abort!”

6. Bà TC: “decision?”

7. TC à B: “abort!”

When B recovers, check with TC for 
decision

Client C

Transaction 
Coordinator TC

A B

abort!



To really understand two-

phase commit, you should 
list the failure cases and 

convince yourself of what 
should happen in each

24



Paxos review

25



1. Give the algorithm and examine how it satisfies stated 
properties (deductive)

2. Begin with properties, build up what an algorithm would 
have to do to satisfy properties (inductive)

• The former is how we treated 2PC and the latter is a more 
formal method

• Which path?
– Red pill of painful truth (formal method)
– Blue pill of blissful ignorance (give the algorithm)?

26

Two ways to learn Paxos



Common material

27



Goal: a collection of processes that can propose values 
would like to reach a consensus value.

1. Safety
– Only a single value is chosen
– Only a proposed value can be chosen
– Only a chosen value is propagated to learners

2. Liveness
– If fewer than half of processes fail, some value eventually 

chosen
– If a value is chosen, a process eventually learns it

28

Properties



• Three roles: proposers, acceptors, learners

• A process can have more than one role, but don’t care 
about that (why?)

• Processes can fail and restart, but have to remember 
some state

• Messages can take arbitrarily long to be delivered, can 
be duplicated, and can be lost, but are not corrupted 
(non-Byzantine)

29

Some administrative stuff



Red pill

30



1. List our safety and liveness properties

2. Start with a simple algorithm that satisfies the safety 
properties and iterate to make more fault tolerant

3. Examine what happens with the final algorithm in 
different failure scenarios

4. Compare and contrast with two-phase commit

31

Strategy



• Use one acceptor – done!
– Proposers send values to the acceptor and the first 

value the acceptor receives is the chosen value
– Learners then learn the value from the acceptor
– We satisfy all our safety properties (review)

• But if our one acceptor fails permanently, we can’t 
make any more progress

32

Choosing a value: v1



• Proposers send proposals to multiple acceptors
– Now we aren’t dependent on a single acceptor
– Use a majority to guarantee only one value is accepted
– If acceptors can only accept one value, there can only 

be one majority (why?)
– Learners learn from an acceptor in the majority
– Once again, safety properties satisfied

• Now we need to know who is in the acceptor group
33

Choosing a value: v2



• Absent network or node failure, we want to be able to 
choose a value even if we only have proposer who 
proposes only one value

• P1: An acceptor must accept the first proposal that it 
receives (why?)

• Problem: we might not have a majority! (why?)

• Solution: let acceptors accept multiple values (how 
does this solve the problem?)

34

Invariant P1



• Proposers send proposals to multiple acceptors

• For book-keeping, let each proposal have a proposal 
number n
– For now, assume there is some protocol among machines 

to do this

• Acceptors can differentiate among and accept multiple 
proposals

• Problem: we don’t satisfy our safety requirements 
anymore! (why?)

35

Choosing a value: v3



• How do we make sure we don’t have different 
majorities choosing different values?

• P2: Want to make sure once we choose a value, we 
stick to it!
– More formally, if our acceptors have accepted value v at 

proposal number m, then all subsequent proposals n, 
where n > m propose v.

36

Invariant P2



• v1: Single acceptor

• v2: Multiple acceptors

• v3: Acceptors accept multiple proposals

• Invariant P2 resolves our problem with v3!!! (softball 
question: why?)

• Of course, just because P2 magically makes v3 work, 
how do we make sure P2 holds?

37

Recap



• P2a: Once we choose a value, every proposal n > m 
accepted by any acceptor will have the same value 
(how does this guarantee P2?)

• P2b: Once we choose a value, every proposal n > m
proposed by any proposer will have the same value 
(how does this guarantee P2a?)

• Why are we doing this???

• Remolding P2 so we can actually implement it
38

Making P2 stronger



• P2c: for proposal n with value v, there is a majority 
of acceptors S where either
– No one has accepted a proposal with number < n
– The proposal with highest number < n accepted thus 

far has value v

• Sketch* of proof by induction:
– Suppose proposal m < n were accepted with value v
– Assume proposal n – 1 has value v
– Show proposal n has value v

39

Making P2 stronger

* Details of the inductive proof in Paxos Made Simple by Leslie Lamport. We’ve simplified the logic, 
but recommend reading the original paper!



• To ensure P2c, if a proposer wants to make proposal n
– Must check for earlier proposal number accepted by 

majority; take the one with highest number (why?)
– If none exist, go ahead and propose new value v

• Easy to check for proposals already accepted (just ask), 
but what about proposals about to be accepted?

• Too hard! Force acceptors to make a promise

• P2c gives us an easy way to implement an algorithm

40

What does P2c give us?



• Everything from v3 (multiple acceptors, proposal 
numbers, accept multiple proposals)

• Prepare request: choose new proposal number n
and ask acceptors
– To promise never to accept a proposal with lower 

proposal number again (why?)
– To return the proposal with the highest number less 

than n that it has accepted, if any (why?)

41

Choosing a value: v4 proposer



• Accept request: if proposer receives responses from 
a majority S, issue proposal n with value v where v is
– The value of the accepted proposal with the highest 

number from among responses (why does this work?)
– Any value selected by proposer if no responder has 

accepted an earlier proposal

42

Choosing a value: v4 proposer



• Responding to prepare request
– Promise not to accept any proposal with number < n
– Proposal with highest number accepted, if any

• Responding to accept request
– Accept if and only if we haven’t promised not to

• We can always ignore requests without compromising safety 
(why? What about liveness?)

• How did the condition for accepting differ between v3 and v4?

43

Choosing a value: v4 acceptor



• Our algorithm guarantees P2c (literally converts its 
requirements to an algorithm)

• P2c guarantees P2, which guarantees we stick to 
a value once we’ve chosen it

• P2 solves our problem from v3 (how to reach 
consensus if acceptors accept multiple values)

• v3 solved our liveness issues with v2 and v1

44

Walking back: why does this work?



• v1: Single acceptor

• v2: Multiple acceptors

• v3: Acceptors accept multiple proposals

• v4: Proposers only propose new value if there hasn’t 
already been an accepted value

• Note how the condition for accepting differs between 
v3 and v4!

45

Recap



Blue pill

46



1. P chooses proposal number n

Choose proposal number

Proposer P

A B C

Acceptors



1. P chooses proposal number n
2. A, B, C:

– minProposalNum: some 
proposal number below 
which I will never accept. 
Initialized to 0.

– acceptedProposal: the 
proposal tuple (n,v) with 
highest n that I have 
accepted. Initialize to null

Acceptors have some initial state

Proposer P

A B C

Acceptors



1. P chooses proposal number n
2. P à A, B, C: “prepare(n)”

Send prepare message to all acceptors

Proposer P

A B C

Acceptors

prepare(n)



1. P chooses proposal number n
2. P à A, B, C: “prepare(n)”
3. A, B, C: if this is the highest 

proposal number I’ve seen, 
remember it
if n > minProposalNum then 
minProposalNum = n

Nodes update state if needed

Proposer P

A B C

Acceptors



1. P chooses proposal number n
2. P à A, B, C: “prepare(n)”
3. A, B, C: if this is the highest 

proposal number I’ve seen, 
remember it

4. A, B, C à P:
– promise I won’t accept any 

proposal less than 
minProposalNum

– return the highest proposal 
number accepted and 
accepted value, if any (none 
so far)

Respond to prepare message

Proposer P

A B C

Acceptors

(minProposalNum, 
acceptedProposal)



5. P à A, B, C: “accept(n, v)”, 
where v is the value from the 
highest accepted proposal 
number I’ve seen

If P receives response from majority, send 
accept request

Proposer P

A B C

Acceptors

accept(n, v)



5. P à A, B, C: “accept(n, v)”, 
where v is the value from the 
highest accepted proposal 
number I’ve seen

6. A, B, C à P:
– If n is greater than 

minProposalNum, accept the 
value and update 
acceptedProposal

– Return the proposal number 
accepted

Respond to accept message

Proposer P

A B C

Acceptors

(minProposal)



7. If we received any rejection (i.e., 
minProposal returned > n), 
repeat protocol

8. Otherwise, choose value

Choosing a value

Proposer P

A B C

Acceptors



Common material

55



• This part of the protocol is important, but not really that 
hard

• Trivially: each acceptor sends accepted proposal to 
each learner (why might this be inefficient?)

56

What about learning values?



• No reply: I was expecting a message, but didn’t 
get it
– Does it matter? When?

• Reboot: I crashed and now must recover
– Solve with write-ahead logs

57

What about failures?



• 2PC can be viewed as a special case of Paxos
• Transaction coordinator is the only proposer
• Nodes are all acceptors
• All acceptors must accept to choose value

• Paxos improves on 2PC
• Much less likely to block than 2PC
• But still can!

58

Paxos vs. 2PC



Paxos by example

(video walkthrough here)

59



• Five servers: S1 through S5

• Two proposers

• Three acceptors

60

The setup



1. Previous value already chosen:

• Server 5 sends prepare requests (green) to the majority of the servers. There is going to be some 
overlap. What is happening at the accept stage?

• P 3.1 = “Prepare proposal with #3 from server 1”,

• A 4.5 X = “Accept proposal with #4 from server 5 with value X”

61

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X
A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

P 4.5 
P 4.5
P 4.5



1. Previous value already chosen:

• Server 5 sends prepare requests (green) to the majority of the servers. There is going to be some 
overlap. What is happening at the accept stage?

• New proposer will find it and use it

62

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X
A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

A 4.5 X
A 4.5 X
A 4.5 X

P 4.5 
P 4.5
P 4.5



1. Previous value already chosen:

• Server 5 sends prepare requests (green) to the majority of the servers. There is going to be some 
overlap. What is happening at the accept stage?

• New proposer will find it and use it

• Server 5 will see X as a response to its prepare request and will abandon the Y value. Then, it will 
accept the X value. Server 5 manages to get a value chosen, but this is the same X value that 
was previously chosen. 63

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X
A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

A 4.5 X
A 4.5 X
A 4.5 X

P 4.5 
P 4.5
P 4.5



• Server 5 sends prepare requests (green) to the majority of the servers. The proposer will see the 
value that proposing Server 1 sent. What is happening at the accept stage?

2. Previous value not chosen, but new proposer sees it:

64

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

P 4.5 
P 4.5
P 4.5



2. Previous value not chosen, but new proposer sees it:

65

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X

A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

A 4.5 X
A 4.5 X
A 4.5 X

P 4.5 
P 4.5
P 4.5

• Server 5 sends prepare requests (green) to the majority of the servers. The proposer will see the 
value that proposing Server 1 sent. What is happening at the accept stage?

• New proposer uses existing value. Both proposers can succeed.

• Server 5 gets value X from server 3. It doesn’t know if X value has been chosen, because it only 
talks to the majority of the servers. It assumes that possibly that the value has been chosen. It will 
go with the other value instead of its own value.



3. Previous value not chosen, new proposer doesn’t see it

• Server 5 sends prepare requests (green) to the majority of the servers. The proposer will not see 
the value that proposing Server 1 sent. What is happening at the accept stage?

66

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 XP 3.1 
P 3.1
P 3.1

X

Y

P 4.5 
P 4.5
P 4.5



3. Previous value not chosen, new proposer doesn’t see it

• Server 5 sends prepare requests (green) to the majority of the servers. The proposer will not see 
the value that proposing Server 1 sent. What is happening at the accept stage?

• New Proposer chooses its own value. Older proposal blocked. What happens for Server 1?

• On the servers that Server 5 checks, there is no other value returned. Eventually, Server 1 will get 
prepare requests to the majority of the servers. These will be discarded as Server 5 has a higher 
proposal number.The server will go ahead and accept its own value. Y will then be chosen. 67

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X

A 3.1 XP 3.1 
P 3.1
P 3.1

X

Y

A 4.5 Y
A 4.5 Y
A 4.5 Y

P 4.5 
P 4.5
P 4.5



• Do you see a problem here?

68

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X
A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

A 3.5 Y
A 3.5 Y
A 3.5 Y

P 3.5 
P 3.5
P 3.5

P 4.1 
P 4.1
P 4.1 P 5.5 

P 5.5
P 5.5

A 4.1 X
A 4.1 X
A 4.1 X



• Do you see a problem here?

• Competing proposers can livelock. Proposer 1 (S1) completes a round of prepares, but before it 
completes the accepting phase, another server does its round of prepares. That cuts off the 
accept phase for server 3, and therefore Proposer 1 starts again with proposal #4. The same 
goes on (and on and on) for Proposer 2 (S5). 

• One solution: randomized delay before restarting. That gives other proposers a chance to finish 
choosing.

69

Paxos Examples

time

S1

S2

S3

S4

S5

A 3.1 X
A 3.1 X
A 3.1 X

P 3.1 
P 3.1
P 3.1

X

Y

A 3.5 Y
A 3.5 Y
A 3.5 Y

P 3.5 
P 3.5
P 3.5

P 4.1 
P 4.1
P 4.1 P 5.5 

P 5.5
P 5.5

A 4.1 X
A 4.1 X
A 4.1 X



Fill out this poll:

https://goo.gl/R9Iydk

70



Assignment 2
Due October 19

Wednesday topic
Consensus II: Viewstamped Replication 

and Raft

71



• Example from class: 
https://www.youtube.com/watch?v=JEpsBg0AO6o

• https://www.quora.com/Distributed-Systems-What-is-
a-simple-explanation-of-the-Paxos-algorithm

• https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr-2003-96.pdf

• http://research.microsoft.com/en-
us/um/people/lamport/pubs/paxos-simple.pdf

72

Additional resources for Paxos


