Primary-Backup Replication

COS 418: Distributed Systems
Lecture 5

Kyle Jamieson

Simplified Fault Tolerance in MapReduce

1) fork .
(1 for (1) fork €1) fork

i MapReduce used GFS, stateless workers, and i
i __Clients themselves to achieve fault tolerance |

splu 2 L) rea

split 3

split 4

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Limited Fault Tolerance in Totally-
Ordered Multicast

5>

« Stateful server replication for fault tolerance...

» But no story for server replacement upon a
server failure 2 no replication

' i Today: Make stateful servers fault-tolerant‘?i

Plan
1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual
machine

» Upcoming — Two-phase commit and
Distributed Consensus protocols

Primary-Backup: Goals

* Mechanism: Replicate and separate servers

» Goal #1: Provide a highly reliable service
—Despite some server and network failures
 Continue operation after failure

» Goal #2: Servers should behave just like a
single, more reliable server

State machine replication

+ Any server is essentially a state machine
— Set of (key, value) pairs is state
— Operations transition between states

* Need an op to be executed on all replicas, or none at all
— i.e., we need distributed all-or-nothing atomicity
— If op is deterministic, replicas will end in same state

+ Key assumption: Operations are deterministic
— We will relax this assumption later today

Primary-Backup (P-B) approach

» Nominate one server the primary, call the other
the backup

—Clients send all operations (get, put) to
current primary

—The primary orders clients’ operations

» Should be only one primary at a time

Need to keep clients, primary, and backup in
sync: who is primary and who is backup

Challenges

* Network and server failures

* Network partitions

—Within each network partition, near-perfect
communication between servers

—Between network partitions, no
communication between servers

Primary-Backup (P-B) approach

A)

*‘ g
%m o gﬁ =
Client p“t(x,1) Q 2o S, (Backup)

S (Primary)

1. Primary logs the operation locally

2. Primary sends operation to backup and waits for ack
— Backup performs or just adds it to its /og

3. Primary performs op and acks to the client
— After backup has applied the operation and ack’ed

J
View server I

* A view server decides who is primary, who is
backup
—Clients and servers depend on view server

* Don’t decide on their own (might not agree)
+ Challenge in designing the view service:
—Only want one primary at a time
— Careful protocol design needed

* For now, assume view server never fails

Monitoring server liveness

» Each replica periodically pings the view server
—View server declares replica dead if it missed N
pings in a row
—Considers the replica alive after a single ping

» Can a replica be alive but declared “dead” by
view server?
—Yes, in the case of network failure or partition

1"

The view server decides the current view
+ View = (view #, primary server, backup server)

Challenge: All parties make their own local
decision of the current view number

R (1,51, Sy) =
Client (2, Sz, -) S, (Beiokary)
(3. S5, Ss) (]

S; (Risekup)

Agreeing on the current view

* In general, any number of servers can ping view server

* Okay to have a view with a primary and no backup

+ Want everyone to agree on the view number
— Include the view # in RPCs between all parties

Transitioning between views

* How to ensure new primary has up-to-date state?
— Only promote a previous backup
* i.e., don’t make a previously-idle server primary
— Set liveness detection timeout > state transfer time

» How does view server know whether backup is up to date?

— View server sends view-change message to all
— Primary must ack new view once backup is up-to-date

— View server stays with current view until ack
» Even if primary has or appears to have failed

Split Brain

View Sen/ler %oo
IS—F2-
(1, S4, S2)
(2, Sz,)

Client

Server S, in the old view

Server S, in the new view

Client

State transfer via operation log

* How does a new backup get the current state?
—If S, is backup in view j but was not in view i—1
— S, asks primary to transfer the state

* One alternative: transfer the entire operation log

State transfer via snhapshot

+ Every op must be either before or after state transfer
— If op before transfer, transfer must reflect op

— If op after transfer, primary forwards the op to the
backup after the state transfer finishes

» If each client has only one RPC outstanding at a time,
state = map + result of the last RPC from each client

— (Had to save this anyway for “at most once” RPC)

Summary of rules

1. View /'s primary must have been primary/backup in view i—1

2. A non-backup must reject forwarded requests

— Backup accepts forwarded requests only if they are in its
idea of the current view

3. A non-primary must reject direct client requests

4. Every operation must be before or after state transfer

20

Primary-Backup: Summary

* First step in our goal of making stateful replicas
fault-tolerant

« Allows replicas to provide continuous service
despite persistent net and machine failures

+ Finds repeated application in practical
systems (next)

21

Plan

1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual
machine
Scales et al., SIGOPS Operating Systems Review 44(4), Dec. 2010 (PDF)

* Upcoming — Two-phase commit and
Distributed Consensus protocols

22

VMware vSphere Fault Tolerance (VM-FT)

* Goals:

1. Replication of the whole virtual machine

2. Completely transparent to applications and
clients

3. High availability for any existing software

23

Overview

» Two virtual machines (primary, :
backup) on different bare metal Fnmary Backup

.
chgfng
—)

Shared Disk/

* Logging channel runs over network

@

« Fiber channel-attached shared disk

U

24

Virtual Machine 1/O

* VM inputs
— Incoming network packets
— Disk reads
— Keyboard and mouse events
— Clock timer interrupt events

* VM outputs
— Outgoing network packets
— Disk writes

25

Overview

* Primary sends inputs to backup (o Backup
VM VM

» Backup outputs dropped

Loggin
chggneq

——)

Shared Disk/

y) BE
AN oW

* Primary-backup heartbeats
— If primary fails, backup takes over

&l

26

VM-FT: Challenges

1. Making the backup an exact replica of primary
2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

27

Log-based VM replication

« Step 1: Hypervisor at the primary logs the
causes of non-determinism:

1. Log results of input events
— Including current program counter value for each

2. Log results of non-deterministic instructions
— e.g. log result of timestamp counter read (RDTSC)

28

Log-based VM replication

« Step 2: Primary hypervisor sends log entries to
backup hypervisor over the logging channel

» Backup hypervisor replays the log entries

— Stops backup VM at next input event or non-
deterministic instruction

* Delivers same input as primary

* Delivers same non-deterministic instruction
result as primary

29

VM-FT Challenges

1. Making the backup an exact replica of primary
2. Making the system behave like a single server
— FT Protocol

3. Avoiding two primaries (Split Brain)

30

Primary to backup failover

» When backup takes over, non-determinism will
make it execute differently than primary would
have done

—This is okay!

* Output requirement: When backup VM takes
over, its execution is consistent with outputs
the primary VM has already sent

3

The problem of inconsistency

Q
Input & Output
N 2 |

Primary

Backup

32

FT protocol

* Primary logs each output operation
— Delays any output until Backup acknowledges it

x 4
Input &Q‘\" 6"§\
. O 7S
Primary >
Backup et
3

i Can restart execution at an output eventi

VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
— Logging channel may break

34

Detecting and responding to failures

* Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

 Before “going live” (backup) or finding new
backup (primary), execute an atomic test-and-
set on a variable in shared storage

» If the replica finds variable already set, it aborts

35

VM-FT: Conclusion

+ Challenging application of primary-backup
replication

* Design for correctness and consistency of
replicated VM outputs despite failures

 Performance results show generally high
performance, low logging bandwidth
overhead

36

11:59 PM tonight:
Assignment 1 Deadline

Friday Precept:
Go concurrency & RPC
Cristian’s algorithm

Monday topic:
Two-Phase Commit

10

