
1

Primary-Backup Replication

COS 418: Distributed Systems
Lecture 5

Kyle Jamieson

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of ⟨word,document ID⟩
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
⟨word, list(document ID)⟩ pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a ⟨key,record⟩ pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

2

Simplified Fault Tolerance in MapReduce

MapReduce used GFS, stateless workers, and
clients themselves to achieve fault tolerance

• Stateful server replication for fault tolerance…

• But no story for server replacement upon a
server failure à no replication

3

Limited Fault Tolerance in Totally-
Ordered Multicast

P1 P2
$

%

Today: Make stateful servers fault-tolerant?

1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual
machine

• Upcoming – Two-phase commit and
Distributed Consensus protocols

Plan

4

2

• Mechanism: Replicate and separate servers

• Goal #1: Provide a highly reliable service
– Despite some server and network failures

• Continue operation after failure

• Goal #2: Servers should behave just like a
single, more reliable server

5

Primary-Backup: Goals
• Any server is essentially a state machine

– Set of (key, value) pairs is state
– Operations transition between states

• Need an op to be executed on all replicas, or none at all
– i.e., we need distributed all-or-nothing atomicity
– If op is deterministic, replicas will end in same state

• Key assumption: Operations are deterministic
– We will relax this assumption later today

State machine replication

6

• Nominate one server the primary, call the other
the backup
– Clients send all operations (get, put) to

current primary
–The primary orders clients’ operations

• Should be only one primary at a time

Primary-Backup (P-B) approach

7

Need to keep clients, primary, and backup in
sync: who is primary and who is backup

• Network and server failures

• Network partitions
– Within each network partition, near-perfect

communication between servers

– Between network partitions, no
communication between servers

8

Challenges

3

1. Primary logs the operation locally

2. Primary sends operation to backup and waits for ack
– Backup performs or just adds it to its log

3. Primary performs op and acks to the client
– After backup has applied the operation and ack’ed

Primary-Backup (P-B) approach

9

S1 (Primary)

S2 (Backup)Client

• A view server decides who is primary, who is
backup
– Clients and servers depend on view server

• Don’t decide on their own (might not agree)

• Challenge in designing the view service:
– Only want one primary at a time
– Careful protocol design needed

• For now, assume view server never fails
10

View server

• Each replica periodically pings the view server
– View server declares replica dead if it missed N

pings in a row
– Considers the replica alive after a single ping

• Can a replica be alive but declared “dead” by
view server?
– Yes, in the case of network failure or partition

11

Monitoring server liveness
• View = (view #, primary server, backup server)

12

The view server decides the current view

S1 (Primary)

S2 (Backup)Client

S3 (Idle)

(1, S1, S2)
(2, S2, −)
(3, S2, S3)

S2 (Primary)

S3 (Backup)

Challenge: All parties make their own local
decision of the current view number

4

• In general, any number of servers can ping view server

• Okay to have a view with a primary and no backup

• Want everyone to agree on the view number
– Include the view # in RPCs between all parties

13

Agreeing on the current view
• How to ensure new primary has up-to-date state?

– Only promote a previous backup
• i.e., don’t make a previously-idle server primary

– Set liveness detection timeout > state transfer time

• How does view server know whether backup is up to date?
– View server sends view-change message to all
– Primary must ack new view once backup is up-to-date

– View server stays with current view until ack
• Even if primary has or appears to have failed

14

Transitioning between views

15

Split Brain

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server
(1, S1, S2)

(2, S2, −)

16

Server S2 in the old view

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server
(1, S1, S2)

(1, S1, S2)
(1, S1, S2)(2, S2, −)

(2, S2, −)

5

17

Server S2 in the new view

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server
(1, S1, S2)

(1, S1, S2)(2, S2, −)
(2, S2, −)

• How does a new backup get the current state?
– If S2 is backup in view i but was not in view i−1
– S2 asks primary to transfer the state

• One alternative: transfer the entire operation log

18

State transfer via operation log

Simple, but inefficient (operation log is long)

• Every op must be either before or after state transfer
– If op before transfer, transfer must reflect op
– If op after transfer, primary forwards the op to the

backup after the state transfer finishes

• If each client has only one RPC outstanding at a time,
state = map + result of the last RPC from each client

– (Had to save this anyway for “at most once” RPC)

19

State transfer via snapshot
1. View i’s primary must have been primary/backup in view i−1

2. A non-backup must reject forwarded requests
– Backup accepts forwarded requests only if they are in its

idea of the current view

3. A non-primary must reject direct client requests

4. Every operation must be before or after state transfer

20

Summary of rules

6

• First step in our goal of making stateful replicas
fault-tolerant

• Allows replicas to provide continuous service
despite persistent net and machine failures

• Finds repeated application in practical
systems (next)

21

Primary-Backup: Summary
1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual
machine
Scales et al., SIGOPS Operating Systems Review 44(4), Dec. 2010 (PDF)

• Upcoming – Two-phase commit and
Distributed Consensus protocols

Plan

22

• Goals:

1. Replication of the whole virtual machine

2. Completely transparent to applications and
clients

3. High availability for any existing software

23

VMware vSphere Fault Tolerance (VM-FT)

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

24

Overview
• Two virtual machines (primary,

backup) on different bare metal

• Logging channel runs over network

• Fiber channel-attached shared disk

7

• VM inputs
– Incoming network packets
– Disk reads
– Keyboard and mouse events
– Clock timer interrupt events

• VM outputs
– Outgoing network packets
– Disk writes

25

Virtual Machine I/O

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

26

Overview

• Primary sends inputs to backup

• Backup outputs dropped

• Primary-backup heartbeats
– If primary fails, backup takes over

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

27

VM-FT: Challenges
• Step 1: Hypervisor at the primary logs the

causes of non-determinism:

1. Log results of input events
– Including current program counter value for each

2. Log results of non-deterministic instructions
– e.g. log result of timestamp counter read (RDTSC)

28

Log-based VM replication

8

• Step 2: Primary hypervisor sends log entries to
backup hypervisor over the logging channel

• Backup hypervisor replays the log entries
– Stops backup VM at next input event or non-

deterministic instruction
• Delivers same input as primary

• Delivers same non-deterministic instruction
result as primary

29

Log-based VM replication
1. Making the backup an exact replica of primary

2. Making the system behave like a single server
– FT Protocol

3. Avoiding two primaries (Split Brain)

30

VM-FT Challenges

• When backup takes over, non-determinism will
make it execute differently than primary would
have done
– This is okay!

• Output requirement: When backup VM takes
over, its execution is consistent with outputs
the primary VM has already sent

31

Primary to backup failover

32

The problem of inconsistency

Primary

Backup

Input Output

9

• Primary logs each output operation
– Delays any output until Backup acknowledges it

33

FT protocol

Primary

Backup

Input

Duplicate output

Can restart execution at an output event

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
– Logging channel may break

34

VM-FT: Challenges

• Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

• Before “going live” (backup) or finding new
backup (primary), execute an atomic test-and-
set on a variable in shared storage

• If the replica finds variable already set, it aborts

35

Detecting and responding to failures
• Challenging application of primary-backup

replication

• Design for correctness and consistency of
replicated VM outputs despite failures

• Performance results show generally high
performance, low logging bandwidth
overhead

36

VM-FT: Conclusion

10

11:59 PM tonight:
Assignment 1 Deadline

Friday Precept:
Go concurrency & RPC

Cristian’s algorithm

Monday topic:
Two-Phase Commit

37

