#### **Stream Processing**



COS 418: Distributed Systems Lecture 22

Michael Freedman

# Simple stream processing



- Single node
  - Read data from socket
  - Process
  - Write output

- 2

# **Examples: Stateless conversion**



- Convert Celsius temperature to Fahrenheit
  - Stateless operation: emit (input \* 9 / 5) + 32

**Examples: Stateless filtering** 



- Function can filter inputs
  - if (input > threshold) { emit input }

# **Examples: Stateful conversion**



- Compute EWMA of Fahrenheit temperature
  - new\_temp =  $\alpha$  \* ( CtoF(input) ) + (1-  $\alpha$ ) \* last\_temp
  - last\_temp = new\_temp
  - emit new\_temp

5

# **Examples: Aggregation (stateful)**



- E.g., Average value per window
  - Window can be # elements (10) or time (1s)
  - Windows can be disjoint (every 5s)
  - Windows can be "tumbling" (5s window every 1s)



## Stream processing as chain



## Stream processing as directed graph



# Enter "BIG DATA"

## The challenge of stream processing

- · Large amounts of data to process in real time
- Examples
  - Social network trends (#trending)
  - Intrusion detection systems (networks, datacenters)
  - Sensors: Detect earthquakes by correlating vibrations of millions of smartphones
  - Fraud detection
    - Visa: 2000 txn / sec on average, peak ~47,000 / sec

0

# Scale "up"

## **Tuple-by-Tuple**

#### Micro-batch

```
input ← read
if (input > threshold) {
    emit input

}

out = []
for input in inputs {
    if (input > threshold) {
        out.append(input)
    }
}
emit out
```

# Scale "up"

#### Tuple-by-Tuple

Lower Latency Higher Latency

Micro-batch

Lower Throughput Higher Throughput

**Why?** Each read/write is an system call into kernel. More cycles performing kernel/application transitions (context switches), less actually spent processing data.



















#### A Tale of Four Frameworks

- 1. Record acknowledgement (Storm)
- 2. Micro-batches (Spark Streaming, Storm Trident)
- 3. Transactional updates (Google Cloud dataflow)
- 4. Distributed snapshots (Flink)

22

## **Apache Storm**

- Architectural components
  - Data: streams of tuples, e.g., Tweet = <Author, Msg, Time>
  - Sources of data: "spouts"
  - Operators to process data: "bolts"
  - Topology: Directed graph of spouts & bolts



## **Apache Storm: Parallelization**

- Multiple processes (tasks) run per bolt
- · Incoming streams split among tasks
  - Shuffle Grouping: Round-robin distribute tuples to tasks
  - Fields Grouping: Partitioned by key / field
  - All Grouping: All tasks receive all tuples (e.g., for joins)



# Fault tolerance via record acknowledgement (Apache Storm -- at least once semantics)

- · Goal: Ensure each input "fully processed"
- · Approach: DAG / tree edge tracking
  - Record edges that get created as tuple is processed.
  - Wait for all edges to be marked done
  - Inform source (spout) of data when complete; otherwise, they resend tuple.
- Challenge: "at least once" means:
  - Bolts can receive tuple > once
  - Replay can be out-of-order
  - ... application needs to handle.



25

# Fault tolerance via record acknowledgement (Apache Storm -- at least once semantics)

- · Spout assigns new unique ID to each tuple
- When bolt "emits" dependent tuple, it informs system of dependency (new edge)
- When a bolt finishes processing tuple, it calls ACK (or can FAIL)
- Acker tasks:
  - Keep track of all emitted edges and receive ACK/FAIL messages from bolts.
  - When messages received about all edges in graph, inform originating spout
- · Spout garbage collects tuple or retransmits
- Note: Best effort delivery by not generating dependency on downstream tuples.



26

# **Apache Spark Streaming:** Discretized Stream Processing

- Split stream into series of small, atomic batch jobs (each of X seconds)
- Process each individual batch using Spark "batch" framework
  - Akin to in-memory MapReduce
- · Emit each micro-batch result
  - RDD = "Resilient Distributed Data"



27

# Apache Spark Streaming: Dataflow-oriented programming

# Create a local StreamingContext with batch interval of 1 second

ssc = StreamingContext(sc, 1)

# Create a DStream that reads from network socket

lines = ssc.socketTextStream("localhost", 9999)

words = lines.flatMap(lambda line: line.split(" ")) # Split each line into words

# Count each word in each batch

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate

#### **Apache Spark Streaming: Dataflow-oriented programming** # Create a local St time 4 ssc = StreamingCo original # Create a DStream DStream lines = ssc.socketT window-based operation windowed words = lines.flatMa **DStream** window window window at time 5 at time 1 at time 3 # Count each word pairs = words.map(lambda word: (word, 1)) wordCounts = pairs.reduceByKeyAndWindow( lambda x, y: x + y, lambda x, y: x - y, 3, 2) wordCounts.pprint() ssc.start() # Start the computation ssc.awaitTermination() # Wait for the computation to terminate

# Fault tolerance via micro batches (Apache Spark Streaming, Storm Trident)

- Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)
  - Tradeoff between throughput (higher) and latency (higher)
- · Each micro-batch may succeed or fail
  - Original inputs are replicated (memory, disk)
  - At failure, latest micro-batch can be simply recomputed (trickier if stateful)
- DAG is a pipeline of transformations from micro-batch to micro-batch
  - Lineage info in each RDD specifies how generated from other RDDs
- To support failure recovery:
  - Occasionally checkpoints RDDs (state) by replicating to other nodes
  - To recover: another worker (1) gets last checkpoint, (2) determines upstream dependencies, then (3) starts recomputing using those usptream dependencies starting at checkpoint (downstream might filter)

30

# Fault Tolerance via transactional updates (Google Cloud Dataflow)

- · Computation is long-running DAG of continuous operators
- · For each intermediate record at operator
  - Create commit record including input record, state update, and derived downstream records generated
  - Write commit record to transactional log / DB
- · On failure, replay log to
  - Restore a consistent state of the computation
  - Replay lost records (further downstream might filter)
- · Requires: High-throughput writes to distributed store

# Fault Tolerance via distributed snapshots (Apache Flink)

- Rather than log each record for each operator, take system-wide snapshots
- · Snapshotting:
  - Determine consistent snapshot of system-wide state (includes in-flight records and operator state)
  - Store state in durable storage
- Recover:

31

- Restoring latest snapshot from durable storage
- Rewinding the stream source to snapshot point, and replay inputs
- Algorithm is based on Chandy-Lamport distributed snapshots, but also captures stream topology

# Fault Tolerance via distributed snapshots (Apache Flink)

 Use markers (barriers) in the input data stream to tell downstream operators when to consistently snapshot



# **Optimizing stream processing**

- Keeping system performant:
  - Careful optimizations of DAG
  - Scheduling: Choice of parallelization, use of resources
  - Where to place computation

**—** ...

• Often, many queries and systems using same cluster concurrently: "Multi-tenancy"

34

Wednesday lecture

Cluster Scheduling