Simple stream processing
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+ Single node

— Read data from socket
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Examples: Stateless conversion Examples: Stateless filtering
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» Convert Celsius temperature to Fahrenheit * Function can filter inputs

— Stateless operation: emit (input*9/5)+ 32 —if (input > threshold) { emit input }




Examples: Stateful conversion
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@

» Compute EWMA of Fahrenheit temperature
— new_temp = a * ( CtoF(input) ) + (1- a) * last_temp
— last_temp = new_temp
— emit new_temp

Examples: Aggregation (stateful)
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* E.g., Average value per window

— Window can be # elements (10) or time (1s)

— Windows can be disjoint (every 5s) | i i |

— Windows can be “tumbling” (5s window every 1s)

Stream processing as chain
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Stream processing as directed graph
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Enter “BIG DATA”

The challenge of stream processing

» Large amounts of data to process in real time

« Examples
— Social network trends (#trending)
— Intrusion detection systems (networks, datacenters)

— Sensors: Detect earthquakes by correlating
vibrations of millions of smartphones

— Fraud detection
« Visa: 2000 txn / sec on average, peak ~47,000 / sec

Scale “up”

Tuple-by-Tuple
input < read

if (input > threshold) {
emit input

}

Micro-batch

inputs < read
out=]
for input in inputs {

if (input > threshold) {

out.append(input)

}

emit out

Scale “up”

Tuple-by-Tuple Micro-batch
Lower Latency Higher Latency
Lower Throughput Higher Throughput

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions
(context switches), less actually spent processing data.




Scale “out”
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13

Stateless operations: trivially parallelized
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State complicates parallelization

» Aggregations:

— Need to join results across parallel computations

v
v

— CtoF Avg Filter —>
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State complicates parallelization

» Aggregations:

— Need to join results across parallel computations

—| CtoF H sCunT Filter
= CtoF M scunT Filter

= | CtoF %unT
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Parallelization complicates fault-tolerance Parallelization complicates fault-tolerance

» Aggregations: .
Can we ensure exactly-once semantics?

— Need to join results across parallel computations

| CtOF |- Filter = - | CtOF H Filter [~
—|CtoF H{ SUm Filter f—>b —|CtoF H Sum —
Cnt Cnt
- blocks - - blocks -
——|CtoF - Sc”m Filter f—p ——»|ctor | Sum Filter [
nt Cnt
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Can parallelize joins Can parallelize joins
» Compute trending keywords Hash 1. merge
_E partitioned 2. sort
G- tweets 3. top-k
portion tweets S portion tweets
—p Sum — Sort [| top-k >
| key
portion tweets S portion tweets
> “':m »| Sort =¥ top-k [~—> — Sort ¥ top-k >
ey
portion tweets Sum - blocks - portion tweets
—p — Sort [P top-k [—>
| key
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Parallelization complicates fault-tolerance

Hash 1. merge
partitioned 2. sort
3. top-k

portion tweets

>

Sort = top-k [=—>

portion tweets

—————— Sort =] top-K [

portion tweets

Sort =1 top-k |==—p

>
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Apache Storm

* Architectural components
— Data: streams of tuples, e.g., Tweet = <Author, Msg, Time>
— Sources of data: “spouts”

— Operators to process data: “bolts”
— Topology: Directed graph of spouts & bolts
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A Tale of Four Frameworks

. Record acknowledgement (Storm)
. Micro-batches (Spark Streaming, Storm Trident)

. Transactional updates (Google Cloud dataflow)

. Distributed snapshots (Flink)

Apache Storm: Parallelization

» Multiple processes (tasks) run per bolt

* Incoming streams split among tasks

— Shuffle Grouping: Round-robin distribute tuples to tasks
— Fields Grouping: Partitioned by key / field
— All Grouping: All tasks receive all tuples (e.g., for joins)
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Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

» Goal: Ensure each input "fully processed”

» Approach: DAG / tree edge tracking

— Record edges that get created as tuple is
processed.

— Wait for all edges to be marked done

— Inform source (spout) of data when [the conjumped
complete; otherwise, they resend tuple. |\ o™

* Challenge: “at least once” means:

— Bolts can receive tuple > once

— Replay can be out-of-order

— ... application needs to handle.

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)
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Apache Spark Streaming:

Discretized Stream Processing

* Split stream into series of small, atomic  live data

batch jobs (each of X seconds) stream Spark

S Y | streaming

* Process each individual batch using batches of X
Spark “batch” framework seconds

— Akin to in-memory MapReduce
Gmmmmm | Seark

. . processed
« Emit each micro-batch result results

— RDD = “Resilient Distributed Data”
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» Spout assigns new unique ID to each tuple

*  When bolt “emits” dependent tuple, it
informs system of dependency (new edge)

» When a bolt finishes processing tuple, it
calls ACK (or can FAIL)

* Acker tasks:

— Keep track of all emitted edges and
receive ACK/FAIL messages from bolts.

— When messages received about all edges

over the moon']
in graph, inform originating spout

» Spout garbage collects tuple or retransmits

* Note: Best effort delivery by not generating
dependency on downstream tuples.
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Apache Spark Streaming:

Dataflow-oriented programming

# Create a local StreamingContext with batch interval of 1 second
ssc = StreamingContext(sc, 1)

# Create a DStream that reads from network socket

lines = ssc.socketTextStream("localhost", 9999)

words = lines.flatMap(lambda line: line.split(" "))  # Split each line into words
# Count each word in each batch

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x +y)

wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate
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Apache Spark Streaming:

Dataflow-oriented programming

# Create a local St,l time 1 time 2 time 3 time 4 time 5
ssc = StreamingCa original
# Create a DStreal] DStream Spark Streaming data flov;lr
lines = ssc.socketT window-based
operation
words = lines.flatM: windowed
’ DStream
window window window
# Count each word at time 1 attime 3 attime 5

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKeyAndWindow( lambda x, y: x +'y,
lambda x, y: x -y, 3, 2)

wordCounts.pprint()

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate
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Fault tolerance via micro batches
(Apache Spark Streaming, Storm Trident)

» Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)
— Tradeoff between throughput (higher) and latency (higher)

 Each micro-batch may succeed or fail
— Original inputs are replicated (memory, disk)
— At failure, latest micro-batch can be simply recomputed (trickier if stateful)

* DAG is a pipeline of transformations from micro-batch to micro-batch
— Lineage info in each RDD specifies how generated from other RDDs

* To support failure recovery:
— Occasionally checkpoints RDDs (state) by replicating to other nodes
— To recover: another worker (1) gets last checkpoint, (2) determines
upstream dependencies, then (3) starts recomputing using those

usptream dependencies starting at checkpoint (downstream might filter)
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Fault Tolerance via transactional updates
(Google Cloud Dataflow)

» Computation is long-running DAG of continuous operators

 For each intermediate record at operator

— Create commit record including input record, state update, and
derived downstream records generated

— Write commit record to transactional log / DB

* On failure, replay log to
— Restore a consistent state of the computation
— Replay lost records (further downstream might filter)

* Requires: High-throughput writes to distributed store »

Fault Tolerance via distributed snapshots
(Apache Flink)

+ Rather than log each record for each operator,
take system-wide snapshots

+ Snapshotting:

— Determine consistent snapshot of system-wide state
(includes in-flight records and operator state)

— Store state in durable storage

¢ Recover:

— Restoring latest snapshot from durable storage
— Rewinding the stream source to snapshot point, and replay inputs

 Algorithm is based on Chandy-Lamport distributed snapshots,
but also captures stream topology .




Fault Tolerance via distributed snapshots
(Apache Flink)

+ Use markers (barriers) in the input data stream to tell
downstream operators when to consistently snapshot

data stream
«— newer records older records —»
checkpoint checkpoint tream record
barrier n barrier n-1 (event)
T T T
part of part part of
heckpoint n+1 checkpoint n heckpoint n-1
\ \ | \ emit barrier n
v — — v
heckpoint — | o=
Barner \ | erator |
s

Optimizing stream processing

Wednesday lecture

Cluster Scheduling

+ Keeping system performant:
— Careful optimizations of DAG
— Scheduling: Choice of parallelization, use of resources

— Where to place computation

 Often, many queries and systems using same
cluster concurrently: “Multi-tenancy”
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