Simple stream processing

Stream Processing -O-0-0-0-O -O-0-0-0-O»

+ Single node

— Read data from socket

COS 418: Distributed Systems — Process

Lecture 22 — Write output

Michael Freedman

Examples: Stateless conversion Examples: Stateless filtering
00000 | CtoF | -O-O-O-OO> -O-O-O-O-O |Filter | <O O—
» Convert Celsius temperature to Fahrenheit * Function can filter inputs

— Stateless operation: emit (input*9/5)+ 32 —if (input > threshold) { emit input }

Examples: Stateful conversion

20202000 4151V NE 00,0004
@

» Compute EWMA of Fahrenheit temperature
— new_temp = a * (CtoF(input)) + (1- a) * last_temp
— last_temp = new_temp
— emit new_temp

Examples: Aggregation (stateful)

O-O0O0O00C+ | Ag | O—O—0O»

* E.g., Average value per window

— Window can be # elements (10) or time (1s)

— Windows can be disjoint (every 5s) | i i |

— Windows can be “tumbling” (5s window every 1s)

Stream processing as chain

Filter p—>

v
\ 4

— CtoF Avg

Stream processing as directed graph

sensor
type 1 alerts
—

CtoF Avg Filter >

\ 4

sensor
type 2 storage

— KtoF >

Enter “BIG DATA”

The challenge of stream processing

» Large amounts of data to process in real time

« Examples
— Social network trends (#trending)
— Intrusion detection systems (networks, datacenters)

— Sensors: Detect earthquakes by correlating
vibrations of millions of smartphones

— Fraud detection
« Visa: 2000 txn / sec on average, peak ~47,000 / sec

Scale “up”

Tuple-by-Tuple
input < read

if (input > threshold) {
emit input

}

Micro-batch

inputs < read
out=]
for input in inputs {

if (input > threshold) {

out.append(input)

}

emit out

Scale “up”

Tuple-by-Tuple Micro-batch
Lower Latency Higher Latency
Lower Throughput Higher Throughput

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions
(context switches), less actually spent processing data.

Scale “out”

Mo—o—o—o—o»
~ONQNO‘@O.-o-o—o—o—o»

13

Stateless operations: trivially parallelized

M@mo-o-o-o-o»
%%&@EO-O@%*

State complicates parallelization

» Aggregations:

— Need to join results across parallel computations

v
v

— CtoF Avg Filter —>

15

State complicates parallelization

» Aggregations:

— Need to join results across parallel computations

—| CtoF H sCunT Filter
= CtoF M scunT Filter

= | CtoF %unT

16

Parallelization complicates fault-tolerance Parallelization complicates fault-tolerance

» Aggregations: .
Can we ensure exactly-once semantics?

— Need to join results across parallel computations

| CtOF |- Filter = - | CtOF H Filter [~
—|CtoF H{ SUm Filter f—>b —|CtoF H Sum —
Cnt Cnt
- blocks - - blocks -
——|CtoF - Sc”m Filter f—p ——»|ctor | Sum Filter [
nt Cnt
17 18
Can parallelize joins Can parallelize joins
» Compute trending keywords Hash 1. merge
_E partitioned 2. sort
G- tweets 3. top-k
portion tweets S portion tweets
—p Sum — Sort [| top-k >
| key
portion tweets S portion tweets
> “':m »| Sort =¥ top-k [~—> — Sort ¥ top-k >
ey
portion tweets Sum - blocks - portion tweets
—p — Sort [P top-k [—>
| key
19 20

Parallelization complicates fault-tolerance

Hash 1. merge
partitioned 2. sort
3. top-k

portion tweets

>

Sort = top-k [=—>

portion tweets

—————— Sort =] top-K [

portion tweets

Sort =1 top-k |==—p

>

21

Apache Storm

* Architectural components
— Data: streams of tuples, e.g., Tweet = <Author, Msg, Time>
— Sources of data: “spouts”

— Operators to process data: “bolts”
— Topology: Directed graph of spouts & bolts

&
/C>c

-

) ¢ ¢

23

A Tale of Four Frameworks

. Record acknowledgement (Storm)
. Micro-batches (Spark Streaming, Storm Trident)

. Transactional updates (Google Cloud dataflow)

. Distributed snapshots (Flink)

Apache Storm: Parallelization

» Multiple processes (tasks) run per bolt

* Incoming streams split among tasks

— Shuffle Grouping: Round-robin distribute tuples to tasks
— Fields Grouping: Partitioned by key / field
— All Grouping: All tasks receive all tuples (e.g., for joins)

¢
/C>c

-

) ¢ ¢

24

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

» Goal: Ensure each input "fully processed”

» Approach: DAG / tree edge tracking

— Record edges that get created as tuple is
processed.

— Wait for all edges to be marked done

— Inform source (spout) of data when [the conjumped
complete; otherwise, they resend tuple. |\ o™

* Challenge: “at least once” means:

— Bolts can receive tuple > once

— Replay can be out-of-order

— ... application needs to handle.

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

25

Apache Spark Streaming:

Discretized Stream Processing

* Split stream into series of small, atomic live data

batch jobs (each of X seconds) stream Spark

S Y | streaming

* Process each individual batch using batches of X
Spark “batch” framework seconds

— Akin to in-memory MapReduce
Gmmmmm | Seark

. . processed
« Emit each micro-batch result results

— RDD = “Resilient Distributed Data”

27

» Spout assigns new unique ID to each tuple

* When bolt “emits” dependent tuple, it
informs system of dependency (new edge)

» When a bolt finishes processing tuple, it
calls ACK (or can FAIL)

* Acker tasks:

— Keep track of all emitted edges and
receive ACK/FAIL messages from bolts.

— When messages received about all edges

over the moon']
in graph, inform originating spout

» Spout garbage collects tuple or retransmits

* Note: Best effort delivery by not generating
dependency on downstream tuples.
26

Apache Spark Streaming:

Dataflow-oriented programming

Create a local StreamingContext with batch interval of 1 second
ssc = StreamingContext(sc, 1)

Create a DStream that reads from network socket

lines = ssc.socketTextStream("localhost", 9999)

words = lines.flatMap(lambda line: line.split(" ")) # Split each line into words
Count each word in each batch

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x +y)

wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate
28

Apache Spark Streaming:

Dataflow-oriented programming

Create a local St,l time 1 time 2 time 3 time 4 time 5
ssc = StreamingCa original
Create a DStreal] DStream Spark Streaming data flov;lr
lines = ssc.socketT window-based
operation
words = lines.flatM: windowed
’ DStream
window window window
Count each word at time 1 attime 3 attime 5

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKeyAndWindow(lambda x, y: x +'y,
lambda x, y: x -y, 3, 2)

wordCounts.pprint()

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate

29

Fault tolerance via micro batches
(Apache Spark Streaming, Storm Trident)

» Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)
— Tradeoff between throughput (higher) and latency (higher)

 Each micro-batch may succeed or fail
— Original inputs are replicated (memory, disk)
— At failure, latest micro-batch can be simply recomputed (trickier if stateful)

* DAG is a pipeline of transformations from micro-batch to micro-batch
— Lineage info in each RDD specifies how generated from other RDDs

* To support failure recovery:
— Occasionally checkpoints RDDs (state) by replicating to other nodes
— To recover: another worker (1) gets last checkpoint, (2) determines
upstream dependencies, then (3) starts recomputing using those

usptream dependencies starting at checkpoint (downstream might filter)
30

Fault Tolerance via transactional updates
(Google Cloud Dataflow)

» Computation is long-running DAG of continuous operators

 For each intermediate record at operator

— Create commit record including input record, state update, and
derived downstream records generated

— Write commit record to transactional log / DB

* On failure, replay log to
— Restore a consistent state of the computation
— Replay lost records (further downstream might filter)

* Requires: High-throughput writes to distributed store »

Fault Tolerance via distributed snapshots
(Apache Flink)

+ Rather than log each record for each operator,
take system-wide snapshots

+ Snapshotting:

— Determine consistent snapshot of system-wide state
(includes in-flight records and operator state)

— Store state in durable storage

¢ Recover:

— Restoring latest snapshot from durable storage
— Rewinding the stream source to snapshot point, and replay inputs

 Algorithm is based on Chandy-Lamport distributed snapshots,
but also captures stream topology .

Fault Tolerance via distributed snapshots
(Apache Flink)

+ Use markers (barriers) in the input data stream to tell
downstream operators when to consistently snapshot

data stream
«— newer records older records —»
checkpoint checkpoint tream record
barrier n barrier n-1 (event)
T T T
part of part part of
heckpoint n+1 checkpoint n heckpoint n-1
\ \ | \ emit barrier n
v — — v
heckpoint — | o=
Barner \ | erator |
s

Optimizing stream processing

Wednesday lecture

Cluster Scheduling

+ Keeping system performant:
— Careful optimizations of DAG
— Scheduling: Choice of parallelization, use of resources

— Where to place computation

 Often, many queries and systems using same
cluster concurrently: “Multi-tenancy”

34

