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Concurrency Control,
Locking, and Recovery

COS 418: Distributed Systems
Lecture 15

Kyle Jamieson

[Selected content adapted from A. LaPaugh and J. Li]

• Say one bit in a DRAM fails:

• …flips a bit in a kernel memory write 
• …causes a kernel panic,
• …program is running an NFS server,
• …a client can’t read from FS, so hangs

Failures in complex systems propagate
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• Definition: A unit of work:
– May consist of multiple data accesses or updates
– Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
– When commit, all updates performed on database 

are made permanent, visible to other transactions

– When abort, database restored to a state such that 
the aborting transaction never executed
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The transaction

4

Defining properties of transactions
• Atomicity: Either all constituent operations of the 

transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves 
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by 
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure 
of volatile (memory) or non-volatile (disk) storage
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1. High transaction speed requirements
– If always fsync() to disk for each result on 

transaction, yields terrible performance

2. Atomic and durable writes to disk are difficult
– In a manner to handle arbitrary crashes

– Hard disks and solid-state storage use write 
buffers in volatile memory 

Challenges
1. Techniques for achieving ACID properties

– Write-ahead logging and checkpointing

– Serializability and two-phase locking

2. Algorithms for Recovery and Isolation Exploiting 
Semantics (ARIES)
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Today

• Transactions properties: ACID
– Atomicity, Consistency, Isolation, Durability

• Application logic checks consistency (C)

• This leaves two main goals for the system:

1. Handle failures (A, D)

2. Handle concurrency (I)
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What does the system need to do?
• Standard “crash failure” model:

• Machines are prone to crashes:
– Disk contents (non-volatile storage) okay
– Memory contents (volatile storage) lost

• Machines don’t misbehave (“Byzantine”)
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Failure model: crash failures
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• Transfers $10 from account A to account B
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Account transfer transaction

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

• Suppose $100 in A, $100 in B

• commit_tx starts the commit protocol:
– write(A, $90) to disk 
– write(B, $110) to disk

• What happens if system crash after first write, but 
before second write?
– After recovery: Partial writes, money is lost
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Problem
transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Lack atomicity in the presence of failures

• Smallest unit of storage that can be atomically written 
to non-volatile storage is called a page

• Buffer manager moves pages between buffer pool 
(in volatile memory) and disk (in non-volatile storage)
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System structure

Buffer pool

Buffer manager
Page

Non-volatile storage

Disk

1. Force all a transaction’s writes to disk before
transaction commits?

– Yes: force policy
– No: no-force policy

2. May uncommitted transactions’ writes overwrite
committed values on disk?

– Yes: steal policy
– No: no-steal policy
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Two design choices
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1. Force all a transaction’s writes to disk before
transaction commits?

– Yes: force policy

2. May uncommitted transactions’ writes overwrite
committed values on disk?

– No: no-steal policy
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Performance implications

Then slower disk writes appear on the 
critical path of a committing transaction

Then buffer manager loses write scheduling flexibility

1. Force all a transaction’s writes to disk before
transaction commits?

– Choose no: no-force policy
☞ Need support for redo: complete a committed 

transaction’s writes on disk

2. May uncommitted transactions’ writes overwrite
committed values on disk?

– Choose yes: steal policy
☞ Need support for undo: removing the effects of 

an uncommitted transaction on disk
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Undo & redo

• Log: A sequential file that stores information about 
transactions and system state
– Resides in separate, non-volatile storage

• One entry in the log for each update, commit, abort 
operation: called a log record

• Log record contains:
– Monotonic-increasing log sequence number (LSN)
– Old value (before image) of the item for undo
– New value (after image) of the item for redo
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How to implement undo & redo?

Non-volatile storage

• Buffer pool (volatile memory) and disk (non-volatile)

• The log resides on a separate partition or disk (in non-
volatile storage)
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System structure

Disk
Log

Buffer pool

Buffer manager Page
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• Ensures atomicity in the event of system crashes 
under no-force/steal buffer management

1. Force all log records pertaining to an updated page into 
the (non-volatile) log before any writes to page itself

2. A transaction is not considered committed until all its 
log records (including commit record) are forced 
into the log
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Write-ahead Logging (WAL)
force_log_entry(A, old=$100, new=$90)
force_log_entry(B, old=$100, new=$110)
write(A, $90)
write(B, $110)
force_log_entry(commit)

• What if the commit log record size > the page size?

• How to ensure each log record is written atomically?
– Write a checksum of entire log entry
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WAL example

Does not have 
to flush to disk

Goal #2: Concurrency control
Transaction isolation
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Two concurrent transactions

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx
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• Isolation: sum appears to happen either 
completely before or completely after transfer
– Sometimes called before-after atomicity

• Schedule for transactions is an ordering of the 
operations performed by those transactions
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Isolation between transactions
• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution resulting in inconsistent 
retrieval, result differing from any serial execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Problem for concurrent execution: 
Inconsistent retrieval

debit credit

debit credit

• Isolation: sum appears to happen either 
completely before or completely after transfer
– Sometimes called before-after atomicity

• Given a schedule of operations:
– Is that schedule in some way “equivalent” to a 

serial execution of transactions?
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Isolation between transactions
• Two operations from different transactions are 

conflicting if:
1. They read and write to the same data item
2. The write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and operations
2. They order all conflicting operations of non-aborting 

transactions in the same way
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Equivalence of schedules
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• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent to 
some serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule
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Conflict serializability
• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent to 
some serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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A serializable schedule

Conflict-free!
Serial schedule

rA

• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent to 
some serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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A non-serializable schedule

Conflicting opsConflicting ops

But in a serial schedule, sum’s reads 
either both before wA or both after wB

• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

28

Testing for serializability
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• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and 

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Serializable schedule, acyclic graph

transfer sum

Serializable

• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and 

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Non-serializable schedule, cyclic graph

transfer sum

Non-serializable

• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t
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Testing for serializability

In general, a schedule is conflict-serializable if 
and only if its precedence graph is acyclic

• Locking-based approaches

• Strawman 1: Big Global Lock
– Acquire the lock when transaction starts
– Release the lock when transaction ends

32

How to ensure a serializable schedule?

Results in a serial transaction schedule 
at the cost of performance
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• Locks maintained by transaction manager
– Transaction requests lock for a data item
– Transaction manager grants or denies lock

• Lock types
– Shared: Need to have before read object
– Exclusive: Need to have before write object
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Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

• Strawman 2: Grab locks independently, for each 
data item (e.g., bank accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B  © 
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock
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How to ensure a serializable schedule?

Permits this non-serializable interleaving

• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

• A growing phase when transaction acquires locks
• A shrinking phase when transaction releases locks

• In practice:
– Growing phase is the entire transaction
– Shrinking phase is during commit
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Two-phase locking (2PL)
• 2PL rule: Once a transaction has released a lock it is 

not allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B  © 
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock
36

2PL allows only serializable schedules

2PL precludes this non-serializable interleaving



10

• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

transfer: ◿A rA ◢A wA ◿B rB ◢B wB✻© 
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks
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2PL and transaction concurrency

2PL permits this serializable, interleaved schedule

• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)
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2PL doesn’t exploit all opportunities
for concurrency

2PL precludes this serializable, interleaved schedule

• What if a lock is unavailable?  Is deadlock possible?
– Yes; but a central controller can detect deadlock 

cycles and abort involved transactions

• The phantom problem
– Database has fancier ops than key-value store
– T1: begin_tx; update employee (set 

salary = 1.1×salary) where dept = “CS”; commit_tx
– T2: insert into employee (“carol”, “CS”)

• Even if they lock individual data items, could 
result in non-serializable execution
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Issues with 2PL
• Linearizability: a guarantee 

about single operations on 
single objects
– Once write completes, all 

later reads (by wall clock) 
should reflect that write

• Serializability is a 
guarantee about 
transactions over one 
or more objects
– Doesn’t impose real-

time constraints
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Serializability versus linearizability

• Linearizability + serializability = strict serializability
– Transaction behavior equivalent to some serial execution

• And that serial execution agrees with real-time
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1. Techniques for achieving ACID properties
– Write-ahead logging and check-pointing à A,D

– Serializability and two-phase locking à I

2. Algorithms for Recovery and Isolation 
Exploiting Semantics (ARIES)
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Today
• In IBM DB2 & MSFT SQL Server, gold standard

• Key ideas:

1. Refinement of WAL (steal/no-force buffer 
management policy)

2. Repeating history after restart due to a crash (redo)

3. Log every change, even undo operations during 
crash recovery

– Helps for repeated crash/restarts
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ARIES (Mohan, 1992)

• Log, composed of log records, each containing:
– LSN: Log sequence number (monotonic)
– prevLSN: Pointer to the previous log record for the 

same transaction
• A linked list for each transaction, “threaded” 

through the log

• Pages
– pageLSN: Uniquely identifies the log record for the 

latest update applied to this page
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ARIES’ stable storage data structures
• Transaction table (T-table): one entry per transaction

– Transaction identifier
– Transaction status (running, committed, aborted)
– lastLSN: LSN of the most recent log record written 

by the transaction

• Dirty page table: one entry per page
– Page identifier
– recoveryLSN: LSN of log record for earliest

change to that page not on disk
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ARIES’ in-memory data structures
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1. Write commit log record to the (non-volatile) log
– Signifies that the commit is beginning (it’s not the 

actual commit point)

2. Write all log records associated with this transaction 
to the log

3. Write end log record to the log
– This is the actual “commit point”
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Transaction commit
• Happens while other transactions are running, as a 

separate transaction
– Does not flush dirty pages to disk
– Does tell us how much to fix on crash

1. Write “begin checkpoint” to log
2. Write current transaction table, dirty page table, 

and “end checkpoint” to log
3. Force log to non-volatile storage
4. Store “begin checkpoint” LSN à master record
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Checkpoint

1. Start with checkpointed T- & dirty page-tables
2. Read log forward from checkpoint, updating tables

– For end entries, remove T from T-table (T1, T3)
– For other log entries, add (T3, T4) or update T-table

• Add LSN to dirty page table’s recoveryLSN
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Crash recovery: Phase 1 (Analysis)
Checkpoint

✔

T2:

T4:

T1:
end

T3:
end

firstLSN

Earliest recoveryLSN

Log:

• Start at firstLSN, scan log entries forward in time
– Reapply action, update pageLSN

• Database state now matches state as recorded by log at 
the time of crash
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Crash recovery: Phase 2 (REDO)

✔

T2:

T4:

T1:

T3:

firstLSNLog:
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• Scan log entries backwards from the end.  For updates:
– Write compensation log record (CLR) to log

• Contains prevLSN for update: UndoNextLSN
– Undo the update’s operation
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Crash recovery: Phase 3 (UNDO)

✔

T2:

T4:

T1:

T3:

firstLSNLog:

• Scan log entries backwards from the end.  For CLRs:
– If UndoNextLSN = null, write end record

• Undo for that transaction is done
– Else, skip to UndoNextLSN for processing

• Turned the undo into a redo, done in Phase 2
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Crash recovery: Phase 3 (UNDO)

✔

T2:

T4:

T1:

T3:

firstLSNLog:

• Brings together all the concepts we’ve discussed for 
ACID, concurrent transactions

• Introduced redo for “repeating history,” novel undo 
logging for repeated crashes

• For the interested: Compare with System R (not 
discussed in this class)
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ARIES: Concluding thoughts

Wednesday topic:
Distributed Transactions
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