

COS 402 - Machine Learning and Artificial Intelligence Fall 2016

Lecture 9: Language models (n-grams)

Sanjeev Arora Elad Hazan

(Borrows from slides of D. Jurafsky Stanford U.)

Thus far in the course: Learning from labeled examples. (SUPERVISED LEARNING Today: Learning from lots of unlabeled/unannotated data. (UNSUPERVISED LEARNING)

YOU CAN OBSERVE A LOT BY JUST WATCHING Yogi Berra

e.g., to understand structure of language, computer can try to go through a big text corpus.

(Will also continue with this theme next time.)

What can you learn by just reading?

1) Syntax

"From now on I will consider language to be a set (finite or infinite) of sentences, each finite in length and constructed out of a finite set of elements."

--Noam Chomsky (1928-): Syntactic Structures (1957)

Mathematical description!

Problem 1: His grammar is highly ambiguous Problem 2: Binary notion of grammatical/ungrammatrical; no notion of likelihood. (Fixes exist, but..)

Possible to learn basic grammar from reading alone; won't do today.

Ambiguity: multiple syntactic interpretations of same sentence

"Time flies like an arrow."

Several other parsings; try to find a few... !!Ambiguities of all kinds are a fact of life in computational linguistics; Figure credit: Bill DeSmedt won't study in this course. This lecture: Simple, even naïve approach to language modeling

Probabilistic model of language

Assigns a probability to every word sequence (grammatical or not)
 P[w₁ w₂ w₃ ... w_n]

Related: $P(w_5|w_1,w_2,w_3)$ "conditional probability of w_5 after w_1,w_2,w_3 "

Typical Use: Improve other language processing tasks:

Philosophical debate

Ludicrous to think of "Probability of a sentence."

"Colorless green ideas sleep furiously."

Chomsky

"Sentence probability" is clearly culture and speaker dependent. But is approximate way to measure likelihood of usage. Useful! This sentence had nonzero probability, as shown by the fact that you uttered it.

Peter Norvig

Bayes Rule/Chain Rule

• Recall definition of conditional probabilities

P(AB) = P(A) P(B|A)

- More variables:
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
- The Chain Rule in General

 $P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)...P(x_n | x_1, ..., x_{n-1})$

Example of applying Chain Rule

$$P(W_1 W_2 \dots W_n) = \prod_i P(W_i \mid W_1 W_2 \dots W_{i-1})$$

P(You like green cream) = *P*(You)*P*(like | You) *P*(green | You like) *P*(cream | You like green)

Actually estimating probabilities from a text corpus

P(You like green cream) = P(You) P(like | You) P(green | You like) P(cream | You like green)

How can we estimate these probabilities empirically?

Not enough data!!

Sparse data problem

V = # of words in Oxford English dictionary = 2 x 10⁶

Number of pairs of words = $V^2 = 4 \times 10^{12}$ (4 Trillion)

Number of triples of words = $V^3 = 8 \times 10^{18}$ (exceeds worldwide data storage)

Neither enough data nor storage to train the language model we desire.

Must settle for approximation!

Simplest approximation: unigram

$$P(W_1 W_2 \dots W_n) \approx \prod_i P(W_i)$$

P("You like green cream")≈ P("You")P("like")P("green")P("cream")

Overestimates probability for this rare sentence since all words in it are fairly common. (remember Chomsky's critique!)

Bigram Model: Prob of next word depend This is small, which lowers probability only on last word.

$$\mathcal{P}(W_i \mid W_1 W_2 \dots W_{i-1}) \approx \mathcal{P}(W_i \mid W_{i-1})$$

of this sentence. (But still too high.)

P("You like green cream")≈ P("You")P("like" | "You")P("green" | "like")P("cream" | "green")

Contrast with full chain rule:

P(You like green cream) = P(You)P(like | You) P(green | You like) P(cream | You like green)

Insufficient data to even train the full bigram m V^2 is too large. Let's return to this later.

Jargon map

Unigram: single word Bigram: Adjacent pair of words Trigram: Adjacent Triple of words

Sanity check:

Number of bigrams in a sentence of length NN-1

Number of trigrams in a sentence of length NN-2

Google n-gram dataset

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

All Our N-gram are Belong to You

Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word <u>n-gram models</u> for a variety of R&D projects, such as <u>statistical machine translation</u>, speech recognition, <u>spelling correction</u>, entity detection, information extraction, and others. While such models have usually been estimated from training corpora containing at most a few billion words, we have been harnessing the vast power of Google's datacenters and distributed processing infrastructure to process larger and larger training corpora. We found that there's <u>no data like more data</u>, and scaled up the size of our data by one order of magnitude, and then another, and then one more - resulting in a training corpus of *one trillion words* from public Web pages.

(Play with n-grams data at https://books.google.com/ngrams)

Aside: Markovian Models

Sequential models for with limited memory of past.

K-th order model : Prob. of next symbol depends only upon last K-symbols. (rough definition!)

A. A. Markov

K=0 \rightarrow Unigram; K =1 \rightarrow Bigram.

(Chomsky): Language is not markovian; long-range dependencies. (i.e., no finite K suffices)

"Bulldogs Bulldogs Bulldogs Fight Fight "!

(Get it? E.g., Bulldogs that bulldogs fight, fight.)

Next few slides: A worked-out example from D. Jurafsky, Stanford

(data from Berkeley Restaurant Project)

Berkeley restaurant project: Sample queries from users

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Converting to probabilities Estimation rule $P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$ Bigram

Unigram	i	want	to	eat	chinese	food	lunch	spend
frequencies	2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Result

Implementation note for n-gram models

Customary to pad each sentence with "start" <s> and "end" </s> symbols

You like green cream \rightarrow <s> You like green cream </s>

Reasons:

(Theoretical) Ensures that sum of probabilities of all (infinitely many) sentences i Optional: Convince yourself of this.

(Practical): Allows us to talk about the probability that say "You" starts a sentence (Unigram Pr(You) does not capture this.)

Estimation of probability of sentence

- P(<s> I want english food </s>) = P(I|<s>)
 - × P(want|I)
 - × P(english|want)
 - × P(food|english)
 - × P(</s>|food) NB: Do everything in log space
 - = .000031

chinese food i. want to eat lunch spend 0.002 0.33 0 0.0036 0.00079 0 0 0 want 0.0022 0.66 0.0011 0.0065 0.0065 0.0054 0.0011 0 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087 to 0.0027 0 0.0027 0.056 0 0 0.021 0 eat 0.0063 0.52 0.0063 0 chinese 0 0 0 0 0 0.00092 0.0037 0.014 0 0.014 food 0 0 0.0029 0.0059 lunch 0 0 0 0 0 0 0.0036 0 0.0036 0 0 0 spend 0

- Avoid underflow
 - (also adding is faster than multiplying)

 $\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$

"Knowledge" captured by model parameters

- P(english|want) = .0011
- P(chinese|want) = .0065
- P(to|want) = .66
- P(eat | to) = .28
- P(food | to) = 0
- P(want | spend) = 0
- P (i | <s>) = .25

Next few slides: How to evaluate language models ("Perplexity")

Evaluating Language Models

- Does our language model give higher probability to good sentences ("real" or "frequently observed") compared to bad ones?
- Methology:
 - (a) Train model on a training set.
 - (b) Test model's performance on previously unseen data (test set)

(c) Have evaluation metric to quantify how well our model does on the test set.

Note: Analogous to methology for supervised learning

Popular evaluation metric: Perplexity score given by the model to test

Perplexity: Intuition

Model is better if in the **test data** it assigns higher probability to word that **actually** occurs.

Perplexity definition

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

=

$$\sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

(NB: Minimize Perplexity \rightarrow Maximize probability of the sentence.)

Chain rule:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

For bigrams:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Sanity Check

Consider a sequence consisting of random letters What is the perplexity of this sentence according to a model that assign prob. 1/26 to each letter?

$$PP(w_1 \ w_2 \ \dots \ w_N) = \sqrt[N]{26^N}$$

= 26.

Moral: PP() measure makes sense for arbitrarily long sentences.

Low perplexity = Better Model

• Training 38 million words, test 1.5 million words,

W	N-gram Order	Unigram	Bigram	Trigram	
	Perplexi ty	962	170	109	

Language model gives a language generator

- Choose a random bigram <s> I
 (<s>, w) according to its probability ^w
- Now choose a random bigram according to its probability
- And so on until we choose </s>
- Then string the words together

```
lity want
want to
(w, X) to eat
eat Chinese
Chinese food
food </s>
```

```
I want to eat Chinese food
```

N-gram approximations to Shakespeare

Unigram

To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Every enter now severally so, let

Hill he late speaks; or! a more to leg less first you enter

Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

What means, sir. I confess she? then all sorts, he is trim, captain.

Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram

Sweet prince, Falstaff shall die. Harry of Monmouth's grave. This shall forbid it should be branded, if renown made it empty. Indeed the duke; and had a very good friend. Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.

Quadrigram

King Henry, What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in: Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, 'tis a noble Lepidus.

Why this even works (sort of)

- N=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types out of V²= 844 million possible bigrams.
 - So 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it *is* fragments of Shakespeare

Overfitting??? Will a model learnt using Shakespeare be any good for Dickens?

Wall Street Journal ≠ Shakespeare

Unigram

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Bigram

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her

Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Suppose some bigram doesn't appear in training data, but it appears in some sentence in test data. What perplexity does the bigram model give to this sentence?

P(sentence) = 0.

 \rightarrow Perplexity = 1/0 = ∞

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Example of a more general issue in finite sampling

You arrive in a new country with N people, and ask 5 randomly chosen people their names: They are Joe, Shmoe, Doe, Roe, and Moe.

"Maybe all people in this country are called Joe/Shmoe/Doe/Roe/Moe"

"Maybe every person has a different name, and I got a random sample of 5 of them."

Statisticians assign probabilities in such cases using Bayesian priors (won't do it to

"Smoothing trick": Reduce probability estimate of seen events; increase for unseen events.

Add-one smoothing (aka Laplace smoothing)

Many other smoothings invented : Good-Turing, Kneser-Ney, etc.

- Pretend we saw each word one more time than we Kneser-Ney, etc.
- "Add 1 to all bigram counts, and V to all unigram counts."

• Old estimate:
$$P_{MLE}(W_i | W_{i-1}) = \frac{O(W_{i-1}, W_i)}{O(W_{i-1})}$$

• Add-1 estimate:
$$P_{Add-1}(W_i | W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + V}$$

NB: For every word w, this doesn't affect $\Sigma_i P(w_i | w)$ (so we still have a proper distribution)

Advanced topic: Neural language models (great progress in machine translation, question answering etc.)

Basic idea: Neural network represents language model but more compactly (fewer parameters).

Training objective resembles perplexityrd vector; "Given last n words, predict the next with good probability." Next time: Attempts to capture semantics (meaning of words, sentences etc

(Vector-space models; also unsupervised learning)