

COS 402 – Machine Learning and Artificial Intelligence Fall 2016

Lecture 4: Learning Theory (cont.) and optimization (start)

Sanjeev Arora Elad Hazan

Admin

- Exercise 1 due today
- Exercise 2 (implementation) next Tue, in class
- Enrolment...
- Late policy (exercises)
- Literature (free!)

Recap

Last lecture:

- Shift from AI by introspection (Naïve methods) to statistical/computational learning theory
- Fundamental theorem of statistical learning
- Sample complexity, overfitting, generalization

Agenda

- (Review) statistical & computational learning theories for learning from examples
- (Review) Fundamental theorem of statistical learning for finite hypothesis classes
- The role of optimization in learning from examples
- Linear classification and the perceptron
- SVM and convex relaxations

Definition: learning from examples w.r.t. hypothesis class

A learning problem: $L = (X, Y, c, \ell, H)$

- X = Domain of examples (emails, pictures, documents, ...)
- Y = label space (for this talk, binary Y={0,1})
- D = distribution over (X,Y) (the world)
- Data access model: learner can obtain i.i.d samples from D
- Concept = mapping $c: X \mapsto Y$
- Loss function $\ell: (Y, Y) \mapsto R$, such as $\ell(y_1, y_2) = 1_{y_1 \neq y_2}$
- $H = class of hypothesis: H \subseteq \{X \mapsto Y\}$
- Goal: produce hypothesis h∈ *H* with low *generalization error*

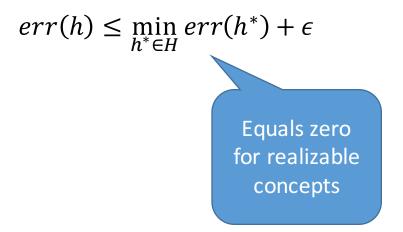
 $err(h) = E_{(x,y)\sim D} \left[\ell(h(x), c(x))\right]$

agnostic PAC learnability

Learning problem $L = (X, Y, H, c, \ell)$ is agnostically PAC-learnable if there exists a learning algorithm s.t. for every $\delta, \epsilon > 0$, there exists $m = f(\epsilon, \delta, H) < \infty$, s.t. after observing S examples, for |S| = m, returns a hypothesis $h \in H$, such that with probability at least

$$1 - \delta$$

it holds that



The meaning of learning from examples

Theorem:

Every realizable learning problem $L = (X, Y, H, c, \ell)$ for finite H, is PAC-learnable with sample complexity $S = O\left(\frac{\log H + \log \frac{1}{\delta}}{\epsilon}\right)$ using the ERM algorithm.

Noam chomesky, June 2011:

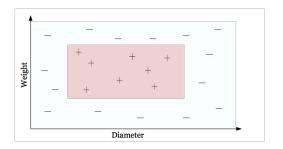
"It's true there's been a lot of work on trying to apply statistical models to various linguistic problems. I think there have been some successes, but a lot of failures. There is a notion of success ... which I think is novel in the history of science. It interprets success as approximating unanalyzed data."

Examples – statistical learning theorem

Theorem:

Every realizable learning problem $L = (X, Y, H, c, \ell)$ for finite H, is PAC-learnable with sample complexity $S = O\left(\frac{\log H + \log \frac{1}{\delta}}{\epsilon}\right)$ using the ERM algorithm.

 Apple factory: Wt. is measured in grams, 100-400 scale.
Diameter: centimeters, 3-20



- Spam classification using decision trees of size 20 nodes
 - 200K words

Infinite hypothesis classes

VC-dimension: corresponding to "effective size" of hypothesis class (infinite or finite)

- Finite classes, $VCdim(H) = \log H$
- Axis-aligned rectangles in \mathbb{R}^d , VCdim(H) = O(d)
- Hyperplanes in \mathbb{R}^d , VCdim(H) = d + 1
- Polygons in the plane, $VCdim(H) = \infty$

Fundamental theorem of statistical learning:

A realizable learning problem $L = (X, Y, H, c, \ell)$ is PAC-learnable if an only if its VC dimension is finite, in which it is learnable with sample complexity $S = O\left(\frac{\operatorname{Vcdim}(H)\log_{\overline{\delta}}^{1}}{\epsilon}\right)$ using the ERM algorithm.

Overfitting??

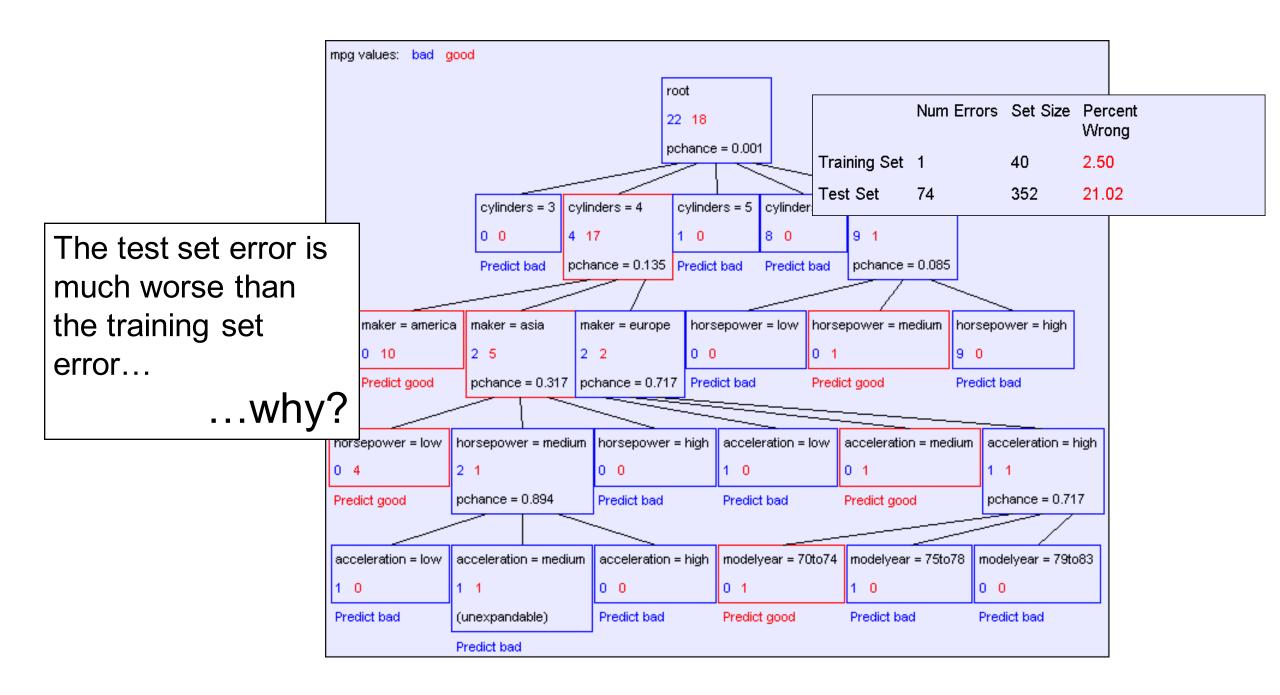
sample complexity
$$S = O\left(\frac{\log H + \log \frac{1}{\delta}}{\epsilon}\right)$$

It is tight!

Reminder: classifying fuel efficiency

- 40 data points
- Goal: predict MPG

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad		medium	medium	medium	medium	70to74	america
bad		medium	medium	medium	low	75to78	europe
bad		high	high	high	low	70to74	america
bad		medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
	:	:	:	:	:	:	:
	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe



 $t = \sin(2\pi x) + \epsilon$

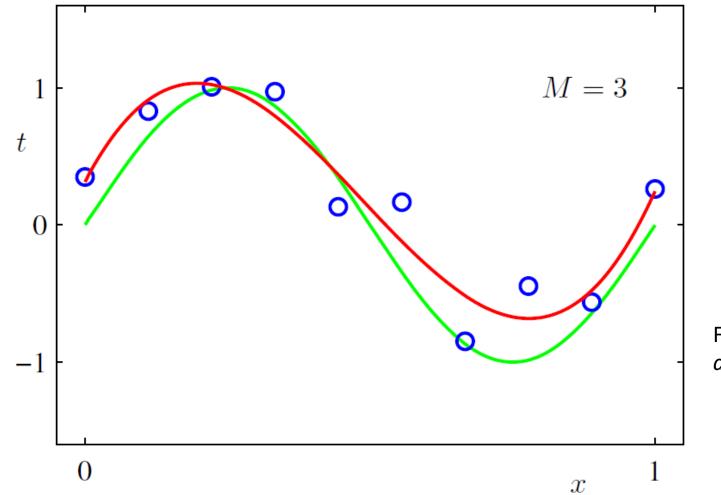


Figure from *Machine Learning and Pattern Recognition*, Bishop

$$t = \sin(2\pi x) + \epsilon$$

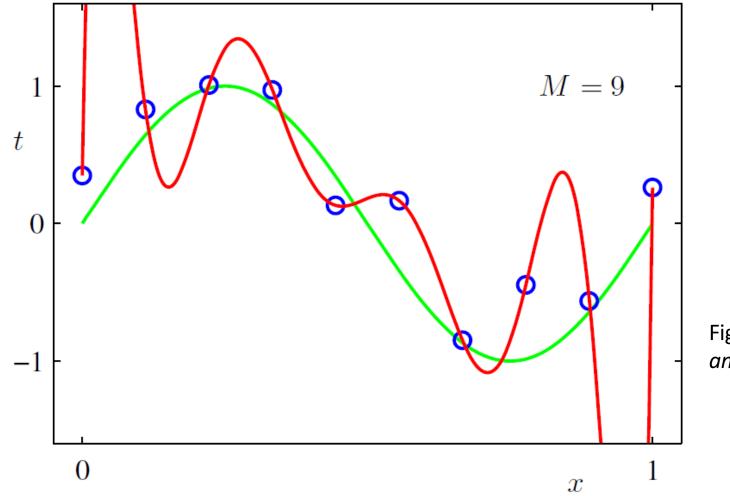


Figure from Machine Learning and Pattern Recognition, Bishop

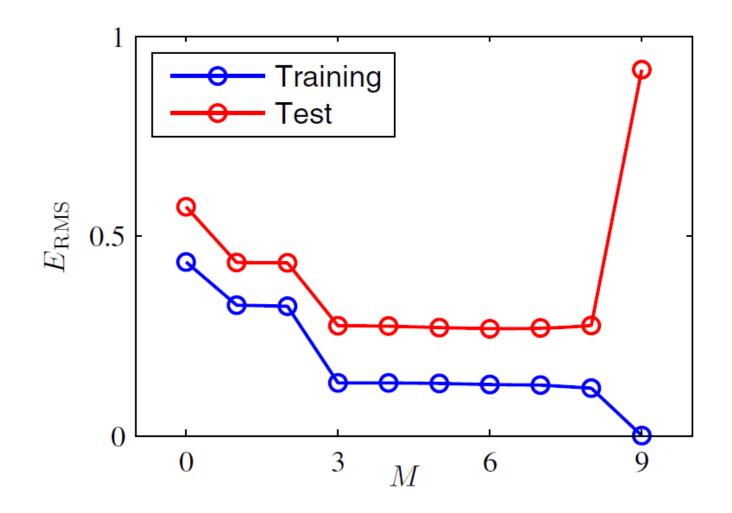


Figure from *Machine Learning and Pattern Recognition*, Bishop

Occam's razor

William of Occam c. 1287 – 1347:

controversial theologian: "plurality should not be posited without necessity",

i.e. "the simplest explanation is best"

Theorem:

Every realizable learning problem $L = (X, Y, H, c, \ell)$ for finite H, is PAC-learnable with sample complexity $S = O\left(\frac{\log H + \log \frac{1}{\delta}}{\epsilon}\right)$ using the ERM algorithm.

Other hypothesis classes?

1. Python programs of <= 10000 words

 $|H| \approx 10000^{10000}$

→ sample complexity is $O\left(\frac{\log H + \log_{\overline{\delta}}^{1}}{\epsilon}\right) = O\left(\frac{50K}{\epsilon}\right)$ - not too bad!

- 2. Efficient algorithm?
- 3. (Halting problem...)

- 4. The MAIN issue with PAC learning is computational efficiency!
- 5. Next topic: MORE HYPOTHESIS CLASSES that permit efficient OPTIMIZATION

Boolean hypothesis

x1	x2	х3	x4	у
1	0	0	1	0
0	1	0	0	1
0	1	1	0	1
1	1	1	0	0

Monomial on a boolean feature vector:

$$M(x_1, \dots, x_4) = \bar{x}_4 \wedge x_2 \wedge \overline{x_1}$$

(homework exercise...)

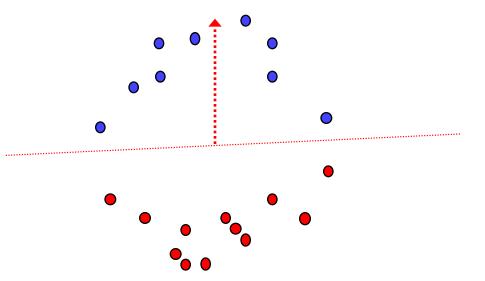
Linear classifiers

Domain = vectors over Euclidean space R^d

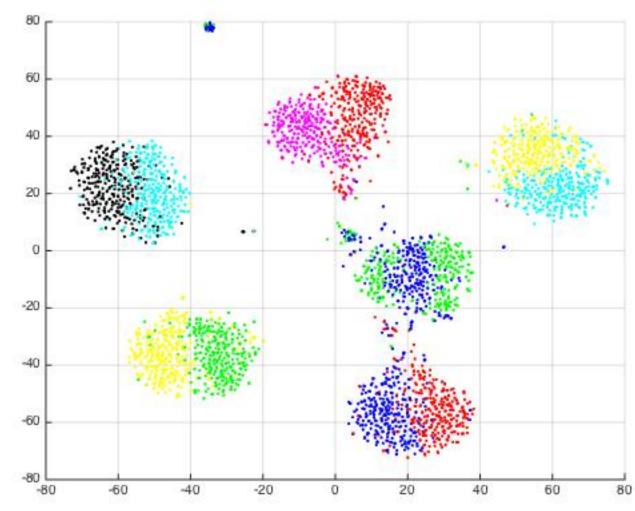
Hypothesis class: all hyperplanes that classify according to:

$$h(x) = sign(w^{\mathsf{T}}x - b)$$

(we usually ignore b – the bias, it is 0 almost w.l.o.g.)



Empirically: the world is many times linearlyseparable



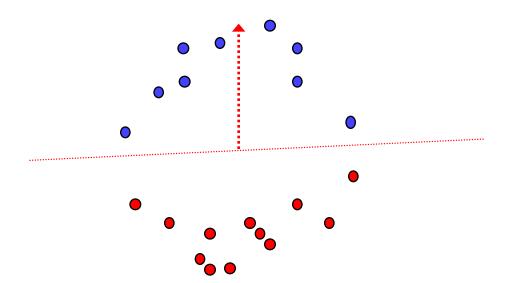
The statistics of linear separators

Hyperplanes in d dimensions with norm at most 1, and accuracy of ϵ :

 $|H| \approx \left(\frac{1}{\epsilon}\right)^d$

VC dimension is d+1

→ Sample complexity
$$O(\frac{d + \log_{\overline{\delta}}^{1}}{\epsilon})$$



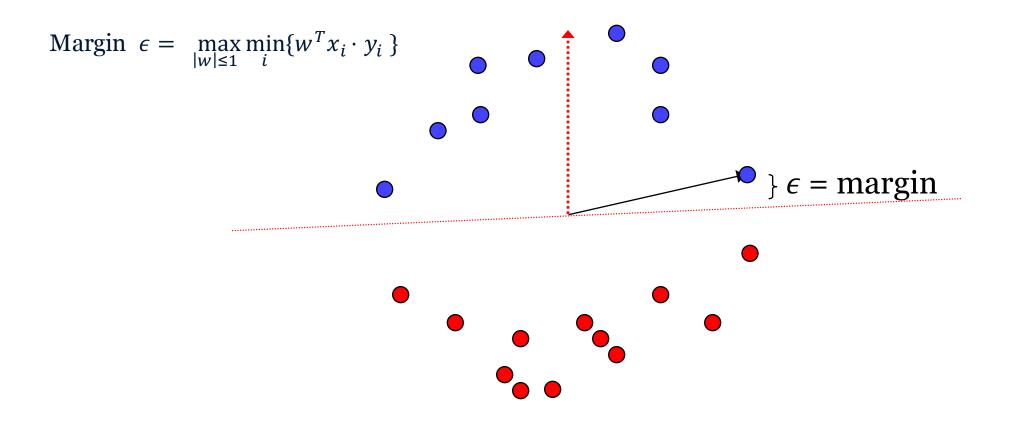
Finding the best linear classifier: Linear Classification

The ERM algorithm reduces to: **n** vectors in **d** dimensions: $x_1, x_2, ..., x_n \in R^d$ Labels $y_1, y_2, ..., y_n \in \{-1, 1\}$ Find vector w such that:

 $\forall i . sign(w^T x_i) = y_i$

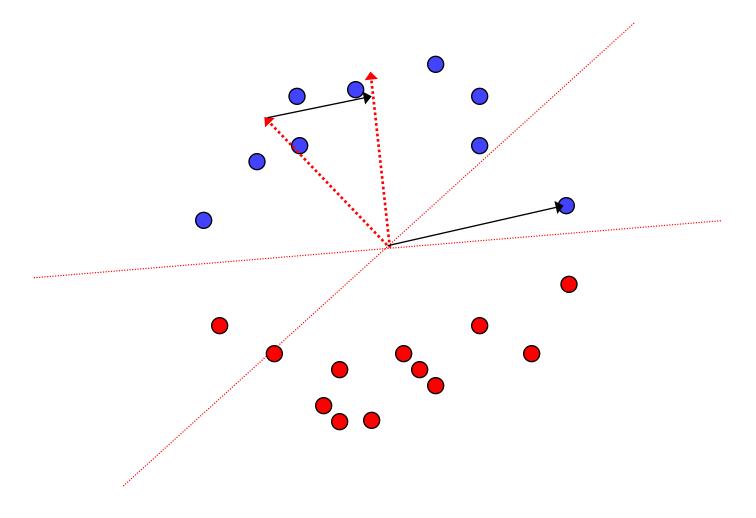
Assume: $|w| \le 1$, $|x_i| \le 1$

The margin



The Perceptron Algorithm

[Rosenblatt 1957, Novikoff 1962, Minsky&Papert 1969]



The Perceptron Algorithm

Iteratively:

- 1. Find vector x_i for which sign $(w^T x_i) \neq y_i$
- 2. Add x_i to w:

 $w_{t+1} \leftarrow w_t + y_i x_i$

The Perceptron Algorithm

Thm [Novikoff 1962]: for data with margin ϵ , perceptron returns separating hyperplane in $\frac{1}{\epsilon^2}$ iterations

Thm [Novikoff 1962]: converges in 1/ ϵ^2 iterations Proof:

Let w^* be the optimal hyperplane, s.t. $\forall i , y_i x_i^T w^* \ge \epsilon$

- 1. Observation 1: $w_{t+1}^T w^* = (w_t + y_t x_t) w^* \ge w_t^T w^* + \epsilon$
- 2. Observation 2:

$$|\mathbf{w}_{t+1}^{T}|^{2} = |\mathbf{w}_{t}^{T}|^{2} + y_{t}x_{t}^{T}w_{t} + |y_{t}x_{t}|^{2} \le |\mathbf{w}_{t}^{T}|^{2} + 1$$

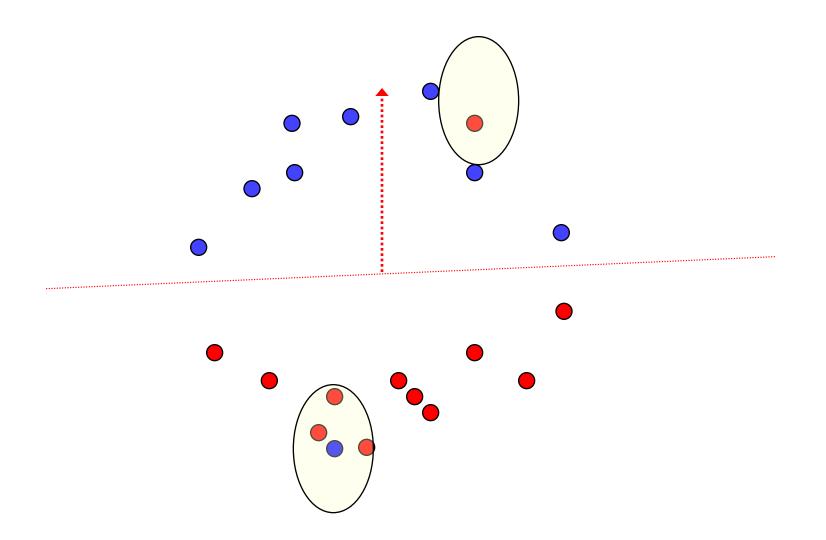
Thus:

$$1 \ge \frac{w_t}{|w_t|} \cdot \mathbf{w}^* \ge \frac{t\epsilon}{\sqrt{t}} = \sqrt{t}\epsilon$$

And hence: $t \leq \frac{1}{\epsilon^2}$

Perceptron: $w_{t+1} \leftarrow w_t + y_i x_i$

Noise?



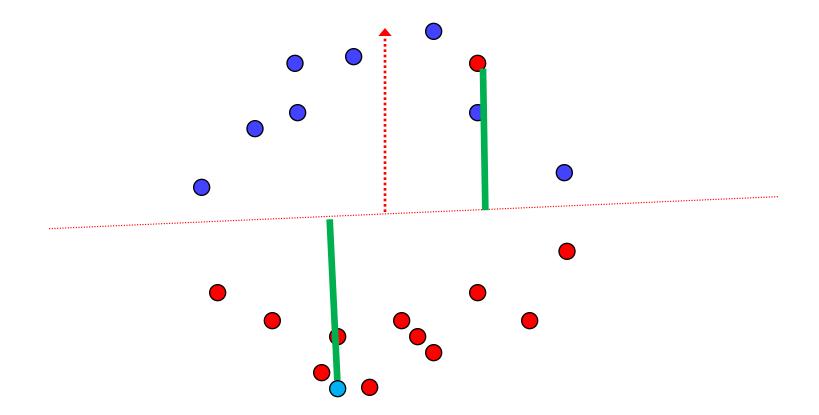
ERM for noisy linear separators?

Given a sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, find hyperplane (through the origin w.l.o.g) such that:

$$w = \arg\min_{|w| \le 1} |\{i \text{ s.t. } sign(w^T x_i) \neq y_i\}|$$

- NP-hard!
- → convex relaxation + optimization!

Noise – minimize sum of weighted violations



Soft-margin SVM (support vector machines)

Given a sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, find hyperplane (through the origin w.l.o.g) such that:

$$w = \arg\min_{|w| \le 1} \{\frac{1}{m} \sum_{i} \max\{0, 1 - y_i w^{\top} x_i\}\}$$

- Efficiently solvable by greedy algorithm gradient descent
- More general methodology: convex optimization

Summary

PAC / Statistical learning theory:

- Precise definition of learning from example
 - Powerful & very general model
- Exact characterization of # of examples to learn (sample complexity)
- Reduction from learning to optimization
- Argued finite hypothesis classes are wonderful (Python)
- Motivated efficient optimization
- Linear classification and the Perceptron + analysis
- SVM \rightarrow convex optimization (next time!)