

COS 402 – Machine Learning and Artificial Intelligence Fall 2016

Lecture 3: Learning Theory

Sanjeev Arora

Elad Hazan

Admin

- Exercise 1 due next Tue, in class
- Enrolment...

Recap

We have seen:

- Al by introspection (Naïve methods)
- Classification by decision trees
- Informally: overfitting, generalization

Agenda

- Statistical & computational learning theories for learning from examples
 - Setting
 - Generalization
 - The ERM algorithm
 - Sample complexity
- Fundamental theorem of statistical learning for finite hypothesis classes
- The role of optimization in learning from examples

Wanted: theory for learning from examples

- Captures: spam detection, chair classification,...
- Generic (doesn't commit to a particular method)
- Answers our questions from last lecture
 - Overfitting
 - Generalization
 - Sample complexity

Setting

Input:

• X = Domain of examples (emails, pictures, documents, ...)

Output:

• Y = label space (for this talk, binary Y={0,1})

Data access model:

- Data access model: learner can obtain i.i.d samples from D = distribution over (X,Y) (the world) Goal:
- produce hypothesish: $X \mapsto Y$ with low generalization error

Learning from examples

A learning problem: $L = (X, Y, c, \ell)$

- X = Domain of examples (emails, pictures, documents, ...)
- Y = label space (for this talk, binary Y={0,1})
- D = distribution over (X,Y) (the world)
- Data access model: learner can obtain i.i.d samples from D
- Concept = mapping $c: X \mapsto Y$
- Loss function $\ell: (Y, Y) \mapsto R$, such as $\ell(y_1, y_2) = 1_{y_1 \neq y_2}$
- Goal: produce hypothesis h: *X* → *Y* with low *generalization error*

 $err(h) = E_{(x,y)\sim D} \left[\ell(h(x), c(x)) \right]$, 4 today: $err(h) = Pr_{(x,y)\sim D} \left[h(x) \neq c(x) \right]$

No free lunch

Learning algorithm:

- 1. observe m samples $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\} \sim D$ from the world distribution.
- 2. Produce hypothesis $h: X \mapsto Y = \{0, 1\}$

Extreme overfitting:

$$h(x) = \begin{cases} y_i & if \quad x = x_i \\ 0 & otherwise \end{cases}$$

No-free lunch theorem: Consider any domain X of size |X| = 2m, and any algorithm A which outputs a hypothesis $h \in H$ given m sample S. Then there exists a concept $c : X \rightarrow \{0, 1\}$ and a distribution D such that:

- err(c) = 0
- With probability at least $\frac{1}{10}$, err(A(S)) $\geq \frac{1}{10}$.

Definition: learning from examples w.r.t. hypothesis class

A learning problem: $L = (X, Y, c, \ell, H)$

- X = Domain of examples (emails, pictures, documents, ...)
- Y = label space (for this talk, binary Y={0,1})
- D = distribution over (X,Y) (the world)
- Data access model: learner can obtain i.i.d samples from D
- Concept = mapping $c: X \mapsto Y$
- Loss function $\ell: (Y, Y) \mapsto R$, such as $\ell(y_1, y_2) = 1_{y_1 \neq y_2}$
- $H = class of hypothesis: H \subseteq \{X \mapsto Y\}$
- Goal: produce hypothesis h∈ *H* with low *generalization error*

 $err(h) = E_{(x,y)\sim D} \left[\ell(h(x), c(x))\right]$

Realizability

A learning problem: $L = (X, Y, c, \ell, H)$ is realizable if there exists a hypothesis that has zero generalization error in H.

$$\exists h \in H \text{ s.t. } err(h) = E_{(x,y)\sim D}\left[\ell(h(x),c(x))\right] = 0$$

If not satisfied, agnostic (competitive) learning: try to minimize generalization error compared to best-in-class, i.e. minimize

$$err(h) - \min_{h^* \in H} err(h^*)$$

Examples

- Apple factory:
 - Apples are sweet (box) or sour (for export)
 - Features of apples: weight and diameter
 - Weight, diameter are distributed uniformly at random in a certain range
 - The concept:
 - X,Y,c = ?
 - Reasonable loss function?
 - Reasonable hypothesis class?
 - Realizable?

Examples

- MPG example from last lecture
- X,Y,c,H = ?

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Examples

- Spam detection:
 - X,Y,c = ?
 - Reasonable loss function?
 - Reasonable hypothesis class?
 - Realizable?
- Chair classification

PAC learnability

Learning algorithm:

- 1. observe m samples $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\} \sim D$ from the world distribution.
- 2. Produce hypothesis $h \in H$

Learning problem $L = (X, Y, H, c, \ell)$ is PAC-learnable if there exists a learning algorithm s.t. for every $\delta, \epsilon > 0$, there exists $m = f(\epsilon, \delta, H) < \infty$, s.t. after observing S examples, for |S| = m, returns a hypothesis $h \in H$, such that with probability at least

$$1 - \delta$$

it holds that

 $err(h) \leq \epsilon$

 $f(\epsilon, \delta, H)$ is called the **sample complexity**

agnostic PAC learnability

Learning problem $L = (X, Y, H, c, \ell)$ is agnostically PAC-learnable if there exists a learning algorithm s.t. for every $\delta, \epsilon > 0$, there exists $m = f(\epsilon, \delta, H) < \infty$, s.t. after observing S examples, for |S| = m, returns a hypothesis $h \in H$, such that with probability at least

$$1 - \delta$$

it holds that

 $err(h) \le \min_{h^* \in H} err(h^*) + \epsilon$

How good is this definition?

- Generality:
 - Any distribution, domain, label set, loss function
 - Distribution is unknown to the learner
 - No algorithmic component
 - Realizable?
- Uncovered
 - Adversarial / changing environment
 - Algorithms...

What can be PAC learned and how?

Natural classes?

Algorithms for PAC learning?

ERM algorithm: (Empirical Risk Minimization)

- Sample $S = f(\epsilon, \delta, H)$ labelled examples from D
- Find and return the
- hypothesis that minimizes the loss on these examples:

$$h_{ERM} = \arg\min_{h \in H} \{err_S(h)\}$$
 where $err_S = \frac{1}{m} \sum_{i=1 \text{ to } m} \ell(h(x_i), y_i)$

Computational efficiency? decision trees?

Fundamental theorem for finite H

Theorem:

Every realizable learning problem $L = (X, Y, H, c, \ell)$ for finite H, is PAC-learnable with sample complexity $S = O\left(\frac{\log H + \log \frac{1}{\delta}}{\epsilon}\right)$ using the ERM algorithm.

- VERY powerful, examples coming up...
- Explicitly algorithmic
- Captures overfitting, generalization...
- Infinite hypothesis classes?
- But first proof...

Fundamental theorem - proof

Proof:

- 1. Let $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\} \sim D$ be the sample from the world, size : $m = \frac{\log H + \log \frac{1}{\delta}}{\epsilon}$
- 2. ERM does NOT learn L only if $err(h_{ERM}) > \epsilon$ with probability larger than δ .
- 3. We know that $err_S(h_{ERM}) = 0$ (why?)

$$\Pr[err(h_{ERM}) > \epsilon] \leq \Pr[\exists h \ s. \ t. \ err(h) > \epsilon \land err_{S}(h) = 0]$$

$$\leq \sum_{h \in H} \Pr[err(h) > \epsilon \land err_S(h) = 0] \leq \sum_{h \in H} \Pr[\forall i \in S \ h(x_i) = y_i | err(h) > \epsilon]$$

$$= \sum_{h \in H} \prod_{i=1 \text{ to } m} \Pr[h(x_i) = y_i | err(h) > \epsilon]$$

$$\leq \sum_{h \in H} \prod_{i=1 \text{ to } m} (1-\epsilon) = \sum_{h} (1-\epsilon)^m$$

$$= |H|(1-\epsilon)^m \le |H| e^{-\epsilon m} = |H| e^{-\epsilon \frac{\log H + \log \frac{1}{\delta}}{\epsilon}} = \delta$$

Examples – statistical learning theorem

Theorem:

Every realizable learning problem $L = (X, Y, H, c, \ell)$ for finite H, is PAC-learnable with sample complexity $S = O\left(\frac{\log H + \log \frac{1}{\delta}}{\epsilon}\right)$ using the ERM algorithm.

 Apple factory: Wt. is measured in grams, 100-400 scale.
Diameter: centimeters, 3-20

- Spam classification using decision trees of size 20 nodes
 - 200K words

We stopped here...

• To be continued next class + start optimization!