
Lecture	10:	Capturing	semantics:	Word	
Embeddings

Sanjeev	Arora	 Elad	Hazan

COS	402	– Machine	
Learning	and	

Artificial	Intelligence
Fall	2016

(Borrows	from	slides	of	D.	Jurafsky Stanford	U.)

Last	time

N-gram	language	models.	Pr[w2|	w1]	

(Assign	a	probability	to	each	sentence;	trained	using	an	unlabeled	corpus)

Unsupervised	
learning

Today:	Unsupervised	learning	for	semantics	(meaning)

Semantics

Study	of	meaning	of	linguistic	expressions.	

Mastering	and	fluently	operating	with	it	seems	a	precursor	to	AI	(Turing	test,	etc.)	

But	every	bit	of	partial	progress	can	immediately	be	used	to	improve	technology:
• Improving	web	search.	
• Siri,	etc.
• Machine	translation
• Information	retrieval,..

Let’s	talk	about	meaning

What	does	the	sentence	“You	like	green	cream”	mean?	
”Come	up	and	see	me	some	time.”	
How	did	words	arrive	at	their	meanings?	

Your	answers	seem	to	involve	a	mix	of	

• Grammar/syntax	
• How	words	map	to	physical	experience
• Physical	sensations	“sweet”,	“breathing”,		“pain”	etc.		and	mental	states	“happy,”	“regretful”	appear

to	be	experienced	roughly	the	same	way	by	everybody,		which	help	anchor	some meanings)
•
•
• (at	some	level,	becomes	philosophy).

What	are	simple	tests	for	understanding	meaning?

Which	of	the	following	means	same	as	pulchritude:
(a)	Truth	(b)	Disgust	(c)	Anger	(d)	Beauty?

Analogy	questions:
Man	:	Woman	::		King	:	??

“How	can	we	teach	a	computer	the	notion	of
word	similarity?”	

Test:	Think	of	a	word	that	co-occurs with:
Cow,	drink,	babies,	calcium…

Distributional	hypothesis	of	meaning,	[Harris’54],	[Firth’57]

Meaning	of	a	word	is	determined	by	words	it	co-occurs	with.

“Tiger”	and	“Lion”	are	similar	because	they	cooccur with	
similar	words		(“jungle”,	“hunt”,	“predator”,	“claws”,	etc.)	

A	computer	could	learn	similarity	by	simply	reading	
a	text	corpus;	no	need	to	wait	for	full	AI!

How	can	we	quantify	“distribution	of	nearby	words”?	

A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

Recall	bigram	frequency P(beer,	drunk)		=	
!"#$%('((),+)#$,)

.")/#0	023(

Redefine	

count(beer,	drunk)	=		#	of	times	beer	and	drunk	appear	within	5	words	of	each	other.

Matrix	of	all	such	bigram	counts	(#	columns	=	V	=106)	

study alcohol drink bottle lion

Beer 35 552 872 677 2

Milk 45 20 935 250 0

Jungle 12 35 110 28 931

Tesgüino 2 67 75 57 0

Which	words	look	most	similar	to	each	other?

Vector	representation
of	“beer.”	

”Distributional	hypothesis”	èWord	similarity	boils	down	to		vector	similarity.

Semantic	
Embedding
[Deerwester et	

al	1990]
“Ignore	bigrams	 with	
frequent	words	like	

“and”,	“for”	

Cosine	Similarity		=	

Cosine	similarity	

“Rescale	vectors	to	unit	length,	compute	dot	product.”	

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

• High	when	two	vectors	have	large	values	
in	same	dimensions.	

• Low	(in	fact	0)	for	orthogonal	vectors
with zeros	in	complementary	distribution

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Other	measures	of	similarity	have	been	defined….

Reminder	about	properties	of	cosine

• -1:	vectors	point	in	opposite	
directions	
• +1:		vectors	point	in	same	
directions
• 0:	vectors	are	orthogonal

Nearest	neighbors	(cosine	similarity)

Important	use	of	
embeddings:	allow	language	
processing systems	to	make	a	guess
when	labeled	data	is	insufficient.
(borrow	data/trained	features
of	nearby	words)

(Semisupervised learning:	
Learn	embeddings from	large	unlabeled
corpus;	use	as	help	for	supervised	learning)	

Apple:
'macintosh'
'microsoft'
'iphone'
'ibm'
'software'
'ios'
'ipad'
'ipod'
'apples'
'fruit'

Ball:
'balls'
'game'
'play'
'thrown'
'back'
'hit'
'throwing'
'player'
'throw'
'catch'

Anthropology	field	trip:	
visualization	of	word	vectors	obtained	from	dating	profiles

[Loren	Shure,	matworks.com]

“Evolution	of	new	word	meanings”
Kulkarni,	Al-Rfou,	Perozzi,	Skiena 2015

Problems	with	above	naive	embedding	method

• Raw	word	frequency	is	not	a	great	measure	of	
association	between	words
• It’s	very	skewed

• “the”	and	“of”	are	very	frequent,	but	maybe	not	the	most	
discriminative

• We’d	rather	have	a	measure	that	asks	whether	a	
context	word	is	particularly	informative	about	the	
target	word.
• Positive	Pointwise Mutual	Information	(PPMI)

Pointwise	Mutual	Information	(PMI)

Pointwise	mutual	information:	
Do	events	x	and	y	co-occur	more	than	if	they	were	
independent?

PMI	between	two	words:		(Church	&	Hanks	1989)
Do	words	x	and	y	co-occur	more	than	if	they	were	
independent?	

PMI 𝑤𝑜𝑟𝑑;, 𝑤𝑜𝑟𝑑< = log<
𝑃(𝑤𝑜𝑟𝑑;, 𝑤𝑜𝑟𝑑<)
𝑃 𝑤𝑜𝑟𝑑; 𝑃(𝑤𝑜𝑟𝑑<)

Positive	PMI:		max{0,	PMI}
(if	PMI	is	-ve,	make	it	0).	

High	for	(lion,	hunt)	
but	≈	0		for	(lion,	
cake).	(Why?)

Improved	embedding

study alcohol drink bottle lion

Beer 35 552 872 677 2

Milk 45 20 935 250 0

Jungle 12 35 110 28 931

Tesgüino 2 67 75 57 0

Replace	each	entry	by	corresponding	PPMI(word1,	word2)

Better:	Before	computing	PPMI(,),	do	Add-1	smoothing	from	last	time.	
(reduces	crazy	effects	due	to	rare	words)	

Implementation	issues

• V	=	vocabulary	size	(say	100,000)

• Then	word	embeddings defined	above	are	V-dimensional.
Very	clunky	to	compute	with!	(Will	improve	soon.)

• We	defined	bigrams	using		“windows	of	size	5”

• The	shorter	the	windows	,	the	more	syntactic the	representation
± 1-3	very	syntacticy

• The	longer	the	windows,	the	more	semantic the	representation
± 4-10	more	semanticy

Dense	word	embeddings.

• PPMI	vectors	are
• long (dimension	|V|=	20,000	to	50,000)
• sparse	(most	elements	are	zero)

• Alternative:	learn	vectors	which	are
• short (dimension	200-1000)
• dense (most	elements	are	non-zero)

Each	dimension	in	dense	version	represents	many	old	dimensions	
(but	it	isn’t	some	trivial	consolidation)

Why	dense	embeddings

• Short	vectors	may	be	easier	to	use	as	features	in	downstream	
machine	learning	(fewer	dimensions	– fewer	parameters	to	
tune)
• Dense	vectors	may	generalize	better	than	storing	explicit	counts
(perform	better	at	many	tasks)	

• Sparse	long	vectors	ignore	synonymy:
• car and	automobile are	synonyms;	but	are	represented	as	
distinct	coordinates;	this	fails	to	capture	similarity	between	a	
word	with	car as	a	neighbor	and	a	word	with	automobile as	
a	neighbor

Q
ua

lit
y

Dimension

How	to	compute	dense	embeddings.

For	each	word,	seeking	a	vector	vw in	R300	 (nothing	special	about	300;	could	be	400)

For	every	pair	of	words	w,	w’			desire				

vw · vw0 ⇡ PPMI(w,w0)

Word	vector	
retains	all	info	
about	the	word’s	
co-occurences

Training	with	l2 loss:

300V	numbers	
replace	V x	V	matrix	
of		PPMI	values.	
(Compression!)

Aside:	this	optimization	is	called	
“Rank-300	SVD”	in	linear	algebra.
(aka	Principle	Component	Analysis)

Minimize
X

w,w0

(vw · vw0 � PPMI(w,w0))2

Even	better	embeddings?

(replaces	V	x	V	matrix	of	PMI	
values	by	V	vectors	of	dimension
300.	 Big	win!)

Problem	with	this	compression:	gives	equal	
importance	to	every	matrix	entry.	

Recall:	PPMI()	estimated	using	cooccurence counts.
Are	some	estimates	more	reliable	than	others?	

[Aside	1:	Theoretical	justification	for	this	objective	in	[A,	Li,	Liang,	Ma,	Risteski TACL	2016].
Aside	2:	Many	other	related	methods	for	compressed	embeddings:	word2vec,	Glove,	neural	nets,..)

Better:	

Minimize
X

w,w0

(vw · vw0 � PPMI(w,w0))2

Minimize

X

w,w0

Count(w,w0
)(vw · vw0 � PPMI(w,w0

))

2

How	to	solve	training	objective

Suggestions?

Gradient	descent	works.		Number	of	variables	is	300	V.	
Objective	is	a		quadratic	function	of	these	variables.	

Minimize

X

w,w0

Count(w,w0
)(vw · vw0 � PPMI(w,w0

))

2

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Cool	property	of	PMI-based	embeddings:	Analogy	solving
(“word2vec”	[Mikolov et	al	2013])

Man	:	Woman	::		King	:	??

vman

vwoman

vking

vqueen

Find w to minimize kv
man

� v
woman

+ v
king

� v
w

k2

Warning:	Such	pictures	
(plentiful	on	internet)	
are	v.	misleading.	Ask	
me	about	correct	
interpretation

Some	other	cool	applications	
(don’t	expect	you	to	fully	understand;	details	won’t	be	on	exam)

Extending	knowledge	bases	

Given	the	list	 Kyoto,	Shanghai,	Chongqing,	Chengdu,	
Busan,	Incheon,..		 generate	more	examples.	

(use	a	large	corpus	like	WSJ	or	wikipedia)	

Lisa	Lee’15

Solution:	Estimate	the	“best	line	capturing	their	embeddings”	
(rank	1	SVD);	find	other	words	whose	embeddings are	close	to	this	line.	

On the Linear Structure of Word Embeddings Chapter 6. Extending a knowledge base | 26

(a) c = classical_composer

word projection
schumann 0.841
beethoven 0.840
stravinsky 0.796
liszt 0.789
schubert 0.788

(b) c = sport

word projection
biking 0.881
volleyball 0.870
skiing 0.810
softball 0.809
soccer 0.801

(c) c = university

word projection
cambridge_university 0.897
university_of_california 0.889
new_york_university 0.868
stanford_university 0.824
yale_university 0.822

(d) c = basketball_player

word projection
dwyane_wade 0.788
aren 0.721
kobe_bryant 0.715
chris_bosh 0.712
tim_duncan 0.708

(e) c = religion

word projection
christianity 0.899
hinduism 0.880
taoism 0.863
buddhist 0.846
judaism 0.830

(f) c = tourist_attraction

word projection
metropolitan_museum_of_art 0.822
museum_of_modern_art 0.813
london 0.764
national_gallery 0.764
tate_gallery 0.756

(g) c = holiday

word projection
diwali 0.821
christmas 0.806
passover 0.784
new_year 0.783
rosh_hashanah 0.749

(h) c = month

word projection
august 0.988
april 0.987
october 0.985
february 0.983
november 0.980

(i) c = animal

word projection
horses 0.806
moose 0.784
elk 0.783
raccoon 0.763
goats 0.762

(j) c = asian_city

word projection
taipei 0.837
taichung 0.819
kaohsiung 0.818
osaka 0.806
tianjin 0.765

Table 6.1: Given a set S
c

⇢ D
c

of words belonging to a category c, EXTEND_CATEGORY (Algorithm
6.1) returns new words in D\S

c

which are also likely to belong to c. Here, we list the top 5 words
returned by EXTEND_CATEGORY(S

c

,k,�) for various categories c in Figure 4.1, using rank k = 10
and threshold � = 0.6. The words w 2 D\S

c

are ordered in descending magnitude of the projection
kv

w

U

k

k onto the category subspace. The algorithm makes a few mistakes, e.g., it returns london
as a tourist_attraction, and aren as a basketball_player. But overall, the algorithm seems to
work very well, and returns correct words that belong to the category.

On the Linear Structure of Word Embeddings Chapter 6. Extending a knowledge base | 26

(a) c = classical_composer

word projection
schumann 0.841
beethoven 0.840
stravinsky 0.796
liszt 0.789
schubert 0.788

(b) c = sport

word projection
biking 0.881
volleyball 0.870
skiing 0.810
softball 0.809
soccer 0.801

(c) c = university

word projection
cambridge_university 0.897
university_of_california 0.889
new_york_university 0.868
stanford_university 0.824
yale_university 0.822

(d) c = basketball_player

word projection
dwyane_wade 0.788
aren 0.721
kobe_bryant 0.715
chris_bosh 0.712
tim_duncan 0.708

(e) c = religion

word projection
christianity 0.899
hinduism 0.880
taoism 0.863
buddhist 0.846
judaism 0.830

(f) c = tourist_attraction

word projection
metropolitan_museum_of_art 0.822
museum_of_modern_art 0.813
london 0.764
national_gallery 0.764
tate_gallery 0.756

(g) c = holiday

word projection
diwali 0.821
christmas 0.806
passover 0.784
new_year 0.783
rosh_hashanah 0.749

(h) c = month

word projection
august 0.988
april 0.987
october 0.985
february 0.983
november 0.980

(i) c = animal

word projection
horses 0.806
moose 0.784
elk 0.783
raccoon 0.763
goats 0.762

(j) c = asian_city

word projection
taipei 0.837
taichung 0.819
kaohsiung 0.818
osaka 0.806
tianjin 0.765

Table 6.1: Given a set S
c

⇢ D
c

of words belonging to a category c, EXTEND_CATEGORY (Algorithm
6.1) returns new words in D\S

c

which are also likely to belong to c. Here, we list the top 5 words
returned by EXTEND_CATEGORY(S

c

,k,�) for various categories c in Figure 4.1, using rank k = 10
and threshold � = 0.6. The words w 2 D\S

c

are ordered in descending magnitude of the projection
kv

w

U

k

k onto the category subspace. The algorithm makes a few mistakes, e.g., it returns london
as a tourist_attraction, and aren as a basketball_player. But overall, the algorithm seems to
work very well, and returns correct words that belong to the category.

On the Linear Structure of Word Embeddings Chapter 6. Extending a knowledge base | 26

(a) c = classical_composer

word projection
schumann 0.841
beethoven 0.840
stravinsky 0.796
liszt 0.789
schubert 0.788

(b) c = sport

word projection
biking 0.881
volleyball 0.870
skiing 0.810
softball 0.809
soccer 0.801

(c) c = university

word projection
cambridge_university 0.897
university_of_california 0.889
new_york_university 0.868
stanford_university 0.824
yale_university 0.822

(d) c = basketball_player

word projection
dwyane_wade 0.788
aren 0.721
kobe_bryant 0.715
chris_bosh 0.712
tim_duncan 0.708

(e) c = religion

word projection
christianity 0.899
hinduism 0.880
taoism 0.863
buddhist 0.846
judaism 0.830

(f) c = tourist_attraction

word projection
metropolitan_museum_of_art 0.822
museum_of_modern_art 0.813
london 0.764
national_gallery 0.764
tate_gallery 0.756

(g) c = holiday

word projection
diwali 0.821
christmas 0.806
passover 0.784
new_year 0.783
rosh_hashanah 0.749

(h) c = month

word projection
august 0.988
april 0.987
october 0.985
february 0.983
november 0.980

(i) c = animal

word projection
horses 0.806
moose 0.784
elk 0.783
raccoon 0.763
goats 0.762

(j) c = asian_city

word projection
taipei 0.837
taichung 0.819
kaohsiung 0.818
osaka 0.806
tianjin 0.765

Table 6.1: Given a set S
c

⇢ D
c

of words belonging to a category c, EXTEND_CATEGORY (Algorithm
6.1) returns new words in D\S

c

which are also likely to belong to c. Here, we list the top 5 words
returned by EXTEND_CATEGORY(S

c

,k,�) for various categories c in Figure 4.1, using rank k = 10
and threshold � = 0.6. The words w 2 D\S

c

are ordered in descending magnitude of the projection
kv

w

U

k

k onto the category subspace. The algorithm makes a few mistakes, e.g., it returns london
as a tourist_attraction, and aren as a basketball_player. But overall, the algorithm seems to
work very well, and returns correct words that belong to the category.

Resolving	meanings	of	polysemous words
[A.	Li,	Liang,	Ma,	Risteski’16]

Polysemous:	Has	multiple	meanings.

Example:	How	many	meanings	does	“tie”	have?		“Spring?”

Atom 1978 825 231 616 1638 149 330
drowning instagram stakes membrane slapping orchestra conferences
suicides twitter thoroughbred mitochondria pulling philharmonic meetings
overdose facebook guineas cytosol plucking philharmonia seminars
murder tumblr preakness cytoplasm squeezing conductor workshops
poisoning vimeo filly membranes twisting symphony exhibitions
commits linkedin fillies organelles bowing orchestras organizes
stabbing reddit epsom endoplasmic slamming toscanini concerts
strangulation myspace racecourse proteins tossing concertgebouw lectures
gunshot tweets sired vesicles grabbing solti presentations

Table 1: Some discourse atoms and their nearest 9 words. By Eqn. (5), words most likely to appear in a
discourse are those nearest to it.

tie spring
trousers season scoreline wires operatic beginning dampers flower creek humid
blouse teams goalless cables soprano until brakes flowers brook winters
waistcoat winning equaliser wiring mezzo months suspension flowering river summers
skirt league clinching electrical contralto earlier absorbers fragrant fork ppen
sleeved finished scoreless wire baritone year wheels lilies piney warm
pants championship replay cable coloratura last damper flowered elk temperatures

Table 2: Five discourse atoms linked to the words tie and spring. Each atom is represented by its nearest 6
words. The algorithm often makes a mistake in the last atom (or two), as happened here.

Similar overlapping clustering in a traditional
graph-theoretic setup —clustering while simultane-
ously cross-relating the senses of different words—
seems more difficult but worth exploring.

4 Experiments with Atoms of Discourse
Our experiments use 300-dimensional embeddings
created using objective (2) and a Wikipedia cor-
pus of 3 billion tokens (Wikimedia, 2012), and the
sparse coding is solved by standard k-SVD algo-
rithm (Damnjanovic et al., 2010). Experimentation
showed that the best sparsity parameter k (i.e., the
maximum number of allowed senses per word) is 5,
and the number of atoms m is about 2000. This hy-
perparameter choice is detailed below.

For the number of senses k, we tried plausible
alternatives (based upon suggestions of many col-
leagues) that allow k to vary for different words,
for example to let k be correlated with the word
frequency. But a fixed choice of k = 5 seems to
produce as good results. To understand why, real-
ize that WSI method retains no information about
the corpus except for the low dimensional word em-
beddings. Since the sparse coding tends to express
a word using fairly different atoms, examining (6)
shows that

∑
j α

2
w,j is bounded by approximately

∥vw∥22. So if too many αw,j’s are allowed to be
nonzero, then some must necessarily have small co-
efficients, which makes the corresponding compo-
nents indistinguishable from noise. In other words,
raising k often picks not only atoms corresponding
to additional senses, but also many that don’t.

The best number of atoms m was found to be
around 2000. This was estimated by re-running
the sparse coding algorithm multiple times with dif-
ferent random initializations, whereupon substantial
overlap was found between the two bases: a large
fraction of vectors in one basis were found to have
a very close vector in the other. Thus combining
the bases while merging duplicates yielded a basis of
about the same size. Around 100 atoms are used by
a large number of words or have no close by words.
They appear semantically meaningless and are ex-
cluded by checking for this condition.4

The content of each atom can be discerned by
looking at the nearby words in cosine similarity.
Some examples are shown in Table 1. Each word is
represented using at most five atoms, which usually

4We think semantically meaningless atoms —i.e., unex-
plained inner products—exist because a simple language model
such as the random discourses model cannot explain all ob-
served cooccurrences, and ends up needed smoothing terms.

Atom 1978 825 231 616 1638 149 330
drowning instagram stakes membrane slapping orchestra conferences
suicides twitter thoroughbred mitochondria pulling philharmonic meetings
overdose facebook guineas cytosol plucking philharmonia seminars
murder tumblr preakness cytoplasm squeezing conductor workshops
poisoning vimeo filly membranes twisting symphony exhibitions
commits linkedin fillies organelles bowing orchestras organizes
stabbing reddit epsom endoplasmic slamming toscanini concerts
strangulation myspace racecourse proteins tossing concertgebouw lectures
gunshot tweets sired vesicles grabbing solti presentations

Table 1: Some discourse atoms and their nearest 9 words. By Eqn. (5), words most likely to appear in a
discourse are those nearest to it.

tie spring
trousers season scoreline wires operatic beginning dampers flower creek humid
blouse teams goalless cables soprano until brakes flowers brook winters
waistcoat winning equaliser wiring mezzo months suspension flowering river summers
skirt league clinching electrical contralto earlier absorbers fragrant fork ppen
sleeved finished scoreless wire baritone year wheels lilies piney warm
pants championship replay cable coloratura last damper flowered elk temperatures

Table 2: Five discourse atoms linked to the words tie and spring. Each atom is represented by its nearest 6
words. The algorithm often makes a mistake in the last atom (or two), as happened here.

Similar overlapping clustering in a traditional
graph-theoretic setup —clustering while simultane-
ously cross-relating the senses of different words—
seems more difficult but worth exploring.

4 Experiments with Atoms of Discourse
Our experiments use 300-dimensional embeddings
created using objective (2) and a Wikipedia cor-
pus of 3 billion tokens (Wikimedia, 2012), and the
sparse coding is solved by standard k-SVD algo-
rithm (Damnjanovic et al., 2010). Experimentation
showed that the best sparsity parameter k (i.e., the
maximum number of allowed senses per word) is 5,
and the number of atoms m is about 2000. This hy-
perparameter choice is detailed below.

For the number of senses k, we tried plausible
alternatives (based upon suggestions of many col-
leagues) that allow k to vary for different words,
for example to let k be correlated with the word
frequency. But a fixed choice of k = 5 seems to
produce as good results. To understand why, real-
ize that WSI method retains no information about
the corpus except for the low dimensional word em-
beddings. Since the sparse coding tends to express
a word using fairly different atoms, examining (6)
shows that

∑
j α

2
w,j is bounded by approximately

∥vw∥22. So if too many αw,j’s are allowed to be
nonzero, then some must necessarily have small co-
efficients, which makes the corresponding compo-
nents indistinguishable from noise. In other words,
raising k often picks not only atoms corresponding
to additional senses, but also many that don’t.

The best number of atoms m was found to be
around 2000. This was estimated by re-running
the sparse coding algorithm multiple times with dif-
ferent random initializations, whereupon substantial
overlap was found between the two bases: a large
fraction of vectors in one basis were found to have
a very close vector in the other. Thus combining
the bases while merging duplicates yielded a basis of
about the same size. Around 100 atoms are used by
a large number of words or have no close by words.
They appear semantically meaningless and are ex-
cluded by checking for this condition.4

The content of each atom can be discerned by
looking at the nearby words in cosine similarity.
Some examples are shown in Table 1. Each word is
represented using at most five atoms, which usually

4We think semantically meaningless atoms —i.e., unex-
plained inner products—exist because a simple language model
such as the random discourses model cannot explain all ob-
served cooccurrences, and ends up needed smoothing terms.

Meanings	extracted	using	a	linear-algebraic	procedure	called	sparse	coding.

Allow	programs	like	machine	translation	to	deal	with	
unknown	words

Translator	trained	using	transcripts	of	Canadian	parliament
(large	corpus,	but	not	huge)

Encounters	a	word	that	doesn’t	occur	in	training	corpus	(eg,	“dude”)

Can	use	word	embeddings (trained	on	a	large	English-only	corpus	like	wikipedia)	
to	learn	a	lot	about	“dude,”	and	neighboring	words	à can	guess	approximate	
translation	of		”dude”.

Sentence	embeddings

a	man	with	a	jersey	is	dunking	the	ball	at	a	basketball	game	

the	ball	is	being	dunked	by	a	man	with	a	jersey	at	a	basketball	
game

Similar	

people	wearing	costumes	are	gathering	in	a	forest	and	are	
looking	in	the	same	direction	

a	little	girl	in	costume	looks	like	a	woman
Dissimilar

Simplest	sentence	embedding	=	Average	of	word	embeddings.	
(Lots	of	research	to	find	better	embeddings,	including	using	neural	nets.)	

Next	lecture:	Collaborative	filtering

(eg movie	or	music	recommender	systems)

Homework	is	out	today;	due	next	Tues

Midterm:	A	week	from	Thurs.

