Did I get it right?

COS 326
David Walker
Princeton University

http://~cos326/notes/evaluation.php
http://~cos326/notes/reasoning.php

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes
“Did I get it right?”

– Most fundamental question you can ask about a computer program

Techniques for answering:

Grading

• hand in program to TA
• check to see if you got an A
• (does not apply after school is out)

Testing

• create a set of sample inputs
• run the program on each input
• check the results
• how far does this get you?
 • has anyone ever tested a homework and not received an A?
 • why did that happen?

Proving

• consider all legal inputs
• show every input yields correct result
• how far does this get you?
 • has anyone ever proven a homework correct and not received an A?
 • why did that happen?
Program proving

• The basic, overall *mechanics* of proving functional programs correct is not particularly hard.
 – You are already doing it to some degree.
 – The real goal of this lecture to help you further organize your thoughts and to give you a more systematic means of understanding your programs.
 – Of course, it can certainly be hard to prove some specific program has some specific property -- just like it can be hard to write a program that solves some hard problem

• We are going to focus on proving the correctness of *pure expressions*
 – their meaning is determined exclusively by the value they return
 – don’t print, don’t mutate global variables, don’t raise exceptions
 – always terminate
 – another word for “pure expression” is “valuable expression”
“Expressions always terminate”

Two key concepts:

– A **valuable expression**
 - an expression that always terminates (without side effects) and produces a value
– A **total function** with type $t1 \rightarrow t2$
 - a function that terminates on all arguments with type $t1$, producing a value of type $t2$
 - the “opposite” of a total function is a **partial function**
 – terminates on some (possibly all) input values

Many reasoning rules depend on expressions being valuable and hence the functions that are applied being total.

Unless told otherwise, you can assume functions are total and expressions are valuable. (Such facts can typically be proven by induction.)
We'll prove properties of OCaml expressions, starting with equivalence properties:

Theorem: easy 1 20 30 == 50

Let

```
let rec exp n =
  match n with
  | 0 -> 1
  | n -> 2 * exp (n-1)
```

Theorem:
for all natural numbers n,

\(\exp n = 2^n\)

Let

```
let rec length xs =
  match xs with
  | [] => 0
  | x::xs => 1 + length xs
```

Theorem:
for all lists xs, ys,

\(\text{length (cat xs ys)} == \text{length xs} + \text{length ys}\)

Let

```
let rec cat xs1 xs2 =
  match xs with
  | [] -> xs2
  | hd::tl -> hd :: cat tl xs2
```
Things to Watch For

• The types are going to guide us in our theorem proving, just like they guided us in our programming
Things to Watch For

- The types are going to guide us in our theorem proving, just like they guided us in our programming
 - when *programming* with lists, *functions* (often) have 2 cases:
 - []
 - hd :: tl
 - when *proving* with lists, *proofs* (often) have 2 cases:
 - []
 - hd :: tl
Things to Watch For

• The types are going to guide us in our theorem proving, just like they guided us in our programming
 – when *programming* with lists, *functions* (often) have 2 cases:
 • []
 • hd :: tl
 – when *proving* with lists, *proofs* (often) have 2 cases:
 • []
 • hd :: tl
 – when *programming* with natural numbers, *functions* have 2 cases:
 • 0
 • k + 1
 – when *proving* with natural numbers, *proofs* have 2 cases:
 • 0
 • k + 1
• This is not a fluke! Proofs usually follow the structure of programs.
Things to Watch For

• More structure:
 – when *programming* with lists:
 • [] is often easy
 • hd :: tl often requires a *recursive function call* on tl
 – we *assume* our recursive function behaves correctly on tl
 – when *proving* with lists:
 • [] is often easy
 • hd :: tl often requires appeal to an *induction hypothesis* for tl
 – we *assume* our property of interest holds for tl
Things to Watch For

• More structure:
 – when *programming* with lists:
 • [] is often easy
 • hd :: tl often requires a *recursive function call* on tl
 – we *assume* our recursive function behaves correctly on tl
 – when *proving* with lists:
 • [] is often easy
 • hd :: tl often requires appeal to an *induction hypothesis* for tl
 – we *assume* our property of interest holds for tl
 – when *programming* with natural numbers:
 • 0 is often easy
 • k + 1 often requires a *recursive call* on k
 – when *proving* with natural numbers:
 • 0 is often easy
 • k + 1 often requires appeal to an *induction hypothesis* for k
Idea 1: The fundamental definition of when programs are equal.

two expressions are equal if and only if:
• they both evaluate to the same value, or
• they both raise the same exception, or
• they both infinite loop
Idea 1: The fundamental definition of when programs are equal.

two expressions are equal if and only if:
• they both evaluate to the same value, or
• they both raise the same exception, or
• they both infinite loop

Idea 2: A fundamental proof principle.

if two expressions e_1 and e_2 are equal
and we have a third complicated expression $\text{FOO} (x)$
then $\text{FOO}(e_1)$ is equal to $\text{FOO} (e_2)$

this is the principle of "substitution of equals for equals"

super useful since we can do a small, local proof
and then use it in a big program: modularity!
The Workhorse: Substitution of Equals for Equals

if two expressions e1 and e2 are equal
and we have a third complicated expression FOO(x)
then FOO(e1) is equal to FOO(e2)

An example: I know 2+2 == 4.

I have a complicated expression: bar (foo (___)) * 34

Then I also know that bar (foo (2+2)) * 34 == bar (foo (4)) * 34.

If expressions contain things like mutable references, this proof principle breaks down. That’s a big reason why I like functional programming and a big reason we are working primarily with pure expressions.
Important Properties of Expression Equality

Other important properties:

(reflexivity) every expression e is equal to itself: e == e

(symmetry) if e1 == e2 then e2 == e1

(transitivity) if e1 == e2 and e2 == e3 then e1 == e3

(evaluation) if e1 --> e2 then e1 == e2.

(congruence, aka substitution of equals for equals) if two expressions are equal, you can substitute one for the other inside any other expression:

- if e1 == e2 then e[e1/x] == e[e2/x]
EASY EXAMPLES
Easy Examples

Most of our proofs will use what we know about the substitution model of evaluation. Eg:

Given: \text{let easy x y z = x * (y + z)}
Most of our proofs will use what we know about the substitution model of evaluation. Eg:

Given: let easy x y z = x * (y + z)

Theorem: easy 1 20 30 == 50
Most of our proofs will use what we know about the substitution model of evaluation. Eg:

Given: \[\text{let easy } x \ y \ z = x * (y + z) \]

Theorem: \[\text{easy } 1 \ 20 \ 30 = 50 \]

Proof:
\[\text{easy } 1 \ 20 \ 30 \] (left-hand side of equation)
Most of our proofs will use what we know about the substitution model of evaluation. Eg:

Given: let easy x y z = x * (y + z)

Theorem: easy 1 20 30 == 50

Proof:

 easy 1 20 30 (left-hand side of equation)
== 1 * (20 + 30) (by evaluating easy 1 step)
Most of our proofs will use what we know about the substitution model of evaluation. Eg:

Given: \[\text{let easy} \ x \ y \ z = x \ast (y + z) \]

Theorem: \[\text{easy} \ 1 \ 20 \ 30 \ == \ 50 \]

Proof:

\[
\begin{align*}
\text{easy} \ 1 \ 20 \ 30 & \quad \text{(left-hand side of equation)} \\
== \ 1 \ast (20 + 30) & \quad \text{(by evaluating easy 1 step)} \\
== 50 & \quad \text{(by math)} \\
\end{align*}
\]

QED.
Most of our proofs will use what we know about the substitution model of evaluation. Eg:

Given: \(\text{let easy } x \ y \ z = x \ast (y + z) \)

Theorem: easy 1 20 30 == 50

Proof:
- easy 1 20 30 (left-hand side of equation)
- == 1 \ast (20 + 30) (by evaluating easy 1 step)
- == 50 (by math)
- QED.

facts go on the left

justifications on the right

notice the 2-column proof style
We can use *symbolic values* in our proofs too. Eg:

Given: let easy x y z = x * (y + z)

Theorem: for all integers n and m, easy 1 n m == n + m

Proof:
easy 1 n m (left-hand side of equation)
We can use *symbolic values* in our proofs too. Eg:

Given: let easy x y z = x * (y + z)

Theorem: for all integers n and m, easy 1 n m == n + m

Proof:

\[
\text{easy 1 n m} \quad \quad \text{(left-hand side of equation)} \\
== 1 * (n + m) \quad \quad \text{(by evaluating easy)}
\]
We can use *symbolic values* in our proofs too. Eg:

Given:

```
let easy x y z = x * (y + z)
```

Theorem: *for all integers* \(n\) *and* \(m\), easy \(1\ n\ m\) == \(n + m\)

Proof:

\[
\begin{align*}
\text{easy } 1 \ n \ m & \quad \text{(left-hand side of equation)} \\
== \ 1 \ * \ (n + m) & \quad \text{(by evaluating easy)} \\
== \ n + m & \quad \text{(by math)} \\
\end{align*}
\]

QED.
We can use *symbolic values* in our proofs too. Eg:

Given: \(\text{let easy } x \ y \ z = x \times (y + z)\)

Theorem: for all integers \(n, m, k\), easy \(k \ n \ m \equiv \text{easy } k \ m \ n\)

Proof:

\[\text{easy } k \ n \ m \quad \text{(left-hand side of equation)}\]
Easy Examples

We can use *symbolic values* in our proofs too. Eg:

Given: \[
\text{let easy } x y z = x \times (y + z)
\]

Theorem: *for all integers* \(n, m, k \), easy \(k n m \) == easy \(k m n \)

Proof:
\[
\text{easy } k n m = k \times (n + m) \quad \text{(left-hand side of equation)}
\]
\[
\text{== } k \times (n + m) \quad \text{(by evaluating easy)}
\]
We can use *symbolic values* in our proofs too. Eg:

Given:
let easy x y z = x * (y + z)

Theorem: for all integers n, m, k, easy k n m == easy k m n

Proof:

\[
\begin{align*}
\text{easy } k \text{ n m} & \quad \text{(left-hand side of equation)} \\
== k \ast (n + m) & \quad \text{(by evaluating easy)} \\
== k \ast (m + n) & \quad \text{(by math, subst of equals for equals)}
\end{align*}
\]

I'm not going to mention this from now on.
Easy Examples

We can use *symbolic values* in our proofs too. Eg:

Given:
let easy \(x\ y\ z = x \ast (y + z)\)

Theorem:
for all integers \(n, m, k\), easy \(k \ast n \ast m\) == easy \(k \ast m \ast n\)

Proof:
easy \(k\ n\ m\) \hspace{1cm} \text{(left-hand side of equation)}

== \(k \ast (n + m)\) \hspace{1cm} \text{(by evaluating easy)}

== \(k \ast (m + n)\) \hspace{1cm} \text{(by math)}

== easy \(k\ m\ n\) \hspace{1cm} \text{(by evaluating easy)}

QED.
We can use *symbolic values* in our proofs too. Eg:

Given: \(\text{let easy } x, y, z = x * (y + z) \)

Theorem: *for all integers* \(n, m, k \), easy \(k n m \) == easy \(k m n \)

Proof:

\[
\begin{align*}
\text{easy } k n m & \quad (\text{left-hand side of equation}) \\
== k * (n + m) & \quad (\text{by def of easy}) \\
== k * (m + n) & \quad (\text{by math}) \\
== \text{easy } k m n & \quad (\text{by def of easy})
\end{align*}
\]

QED.

substitution/evaluating/“unfolding” a definition

the reverse: “folding” a definition back up
An Aside: Symbolic Evaluation

One last thing: we sometimes find ourselves with a function, like easy, that has a symbolic argument like \(k+1 \) for some \(k \) and we would like to evaluate it in our proof. eg:

\[
\text{easy x y (k+1)}
\]
\[
== x * (y + (k+1)) \quad \text{(by evaluation of easy I hope)}
\]

However, that is not how O’Caml evaluation works. O’Caml evaluates it’s arguments to a \textit{value} first, and then calls the function.

Don’t worry: if you know that the expression \textit{will} evaluate to a value (and will not infinite loop or raise an exception) then you can substitute the symbolic expression for the parameter of the function.

\textit{To be rigorous, you should prove it will evaluate to a value, not just guess ... typically we will take this for granted ...}
An Aside: Symbolic Evaluation

An interesting example:

let const x = 7

const (exp) == 7 (By evaluation of const?)

does this work for any expression?
An Aside: Symbolic Evaluation

An interesting example:

```javascript
let const x = 7

const ( n / 0 ) == 7   (By careless, wrong! evaluation of const)
```
An Aside: Symbolic Evaluation

An interesting example:

```javascript
let const x = 7
```

c\(\text{const } (n \div 0) == 7 \) (By careless, wrong! evaluation of const)

- \(n \div 0\) raises an exception
- so \(\text{const } (n \div 0)\) raises an exception
- but 7 is just 7 and doesn’t raise an exception
- an expression that raises an exception is not equal to one that returns a value!
An Aside: Symbolic Evaluation

An interesting example:

```javascript
let const x = 7
```

\[\text{const } (n / 0) \equiv 7 \] (By *careless, wrong!* evaluation of const)

what to remember:

\[f(e) \equiv \text{body_of_f_with_e_substituted_for_f_parameter} \]

whenever \(e \) evaluates to a value (not an exception or infinite loop)
Summary so far: Proof by simple calculation

• Some proofs are very easy and can be done by:
 – unfolding definitions (ie: using forwards evaluation)
 – using lemmas or facts we already know (eg: math)
 – folding definitions back up (ie: using reverse evaluation)

• Eg:

Definition:
let easy x y z = x * (y + z)

given this we do this proof

Theorem: easy a b c == easy a c b

Proof:

easy a b c

== a * (b + c) (by def of easy)

== a * (c + b) (by math)

== easy a c b (by def of easy)
INDUCTIVE PROOFS
Theorem: For all natural numbers n, $\text{exp}(n) = 2^n$.

```ocaml
let rec exp n = 
  match n with
  | 0 -> 1
  | n -> 2 * exp (n-1)
```
Theorem: For all natural numbers n,
exp(n) == 2^n.

Recall: Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
 match n with
 | 0 -> 1
 | n -> 2 * exp (n-1)
Theorem: For all natural numbers n,
\(\text{exp}(n) = 2^n \).

Recall: Every natural number n is either 0 or it is k+1 (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = 0 \):

\(\text{exp} \, 0 \)
Theorem: For all natural numbers n,
\(\text{exp}(n) = 2^n \).

Recall: Every natural number n is either 0 or it is \(k+1 \) (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = 0 \):
\[
\text{exp } 0 = \text{match } 0 \text{ with } \begin{cases} 0 \rightarrow 1 \\ n \rightarrow 2 \times \text{exp}(n-1) \end{cases} \quad \text{(by unfolding exp)}
\]
Theorem: For all natural numbers \(n \),
\[\exp(n) = 2^n. \]

Recall: Every natural number \(n \) is either \(0 \) or it is \(k+1 \) (where \(k \) is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = 0 \):
\[
\begin{align*}
\exp 0 &= \text{match } 0 \text{ with } 0 \rightarrow 1 \mid n \rightarrow 2 \ast \exp (n-1) \\
&= 1 \\
&= 2^0
\end{align*}
\]
(by unfolding \(\exp \))
(by evaluating match)
(by math)
Theorem: For all natural numbers n,
\[\exp(n) = 2^n. \]

Recall: Every natural number n is either 0 or it is k+1 (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: n == k+1:
\[\exp(k+1) \]
Theorem: For all natural numbers n,
exp(n) == 2^n.

Recall: Every natural number n is either 0 or it is k+1 (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: n == k+1:
 exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by unfolding exp)
Theorem: For all natural numbers \(n \),
\[
\text{exp}(n) = 2^n.
\]

Recall: Every natural number \(n \) is either 0 or it is \(k+1 \) (where \(k \) is also a natural number).
Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = k+1 \):

\[
\text{exp} (k+1)
\]
\[
= \text{match} (k+1) \text{ with } 0 \rightarrow 1 \mid n \rightarrow 2 \ast \text{exp} (n-1) \quad \text{(by unfolding exp)}
\]
\[
= 2 \ast \text{exp} (k+1-1) \quad \text{(by evaluating case)}
\]
A problem

Theorem: For all natural numbers n,

\[\text{exp}(n) = 2^n. \]

Recall: Every natural number n is either 0 or it is k+1 (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = k+1 \):

\[
\begin{align*}
\text{exp}(k+1) & = \text{match } (k+1) \text{ with } 0 \to 1 \mid n \to 2 \times \text{exp}(n-1) \\
& = 2 \times \text{exp}(k+1 - 1) \quad \text{(by evaluating case)} \\
& = ?? \quad \text{(by unfolding exp)}
\end{align*}
\]
Theorem: For all natural numbers n,

\[\text{exp}(n) = 2^n. \]

Recall: Every natural number n is either 0 or it is k+1 (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = k+1 \):

\[\text{exp}(k+1) \]
\[= \text{match (k+1) with 0 -> 1 | n -> 2 * exp (n -1)} \] (by unfolding exp)
\[= 2 * \text{exp}(k+1 - 1) \] (by evaluating case)
\[= 2 * (\text{match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)}) \] (by unfolding exp)
Theorem: For all natural numbers \(n \),
\[
\exp(n) = 2^n
\]

Recall: Every natural number \(n \) is either 0 or it is \(k+1 \) (where \(k \) is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n = k+1 \):
\[
\exp(k+1)
\]

\[
= \text{match } (k+1) \text{ with } 0 \rightarrow 1 \mid n \rightarrow 2 \times \exp(n-1) \quad \text{(by unfolding } \exp) \\
= 2 \times \exp(k+1-1) \quad \text{(by evaluating case)} \\
= 2 \times (\text{match } (k+1-1) \text{ with } 0 \rightarrow 1 \mid n \rightarrow 2 \times \exp(n-1)) \quad \text{(by unfolding } \exp) \\
= 2 \times (2 \times \exp((k+1) - 1 - 1)) \quad \text{(by evaluating case)}
\]
A problem

Theorem: For all natural numbers n,
\(\text{exp}(n) = 2^n \).

Recall: Every natural number n is
either 0 or it is \(k+1 \) (where \(k \) is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: \(n = k+1 \):

\[
\begin{align*}
\text{exp}(k+1) \\
&= \text{match} \ (k+1) \ \text{with} \\
&\quad | \ 0 \rightarrow 1 \\
&\quad | \ n \rightarrow 2 \star \text{exp}(n-1) \\
&= 2 \star \text{exp}(k+1-1) \\
&= 2 \star \left(\text{match} \ (k+1-1) \ \text{of} \\
&\quad | \ 0 \rightarrow 1 \\
&\quad | \ n \rightarrow 2 \star \text{exp}(n-1) \right) \\
&= 2 \star \left(2 \star \text{exp} \ ((k+1)-1-1) \right) \\
&= \ldots \text{we aren't making progress} \ldots \text{just unrolling the loop forever} \ldots
\end{align*}
\]
When proving theorems about recursive functions, we usually need to use *induction*.

- In inductive proofs, in a case for object X, we assume that the theorem holds *for all objects smaller than $X*.
 - this assumption is called the *inductive hypothesis* (IH for short)
- Eg: When proving a theorem about natural numbers by induction, and considering the case for natural number $k+1$, we get to assume our theorem is true for natural number k (because k is smaller than $k+1$)
- Eg: When proving a theorem about lists by induction, and considering the case for a list $x::xs$, we get to assume our theorem is true for the list xs (which is a shorter list than $x::xs$)
Theorem: For all natural numbers n,
exp(n) == 2^n.

Recall: Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n == k+1:
exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by unfolding exp)
== 2 * exp (k+1 - 1) (by evaluating case)
Theorem: For all natural numbers n,
\[\text{exp}(n) == 2^n. \]

Recall: Every natural number n is either 0 or it is \(k+1 \) (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: \(n == k+1: \)

\[
\begin{align*}
\text{exp} \ (k+1) &= \text{match} \ (k+1) \text{ with } 0 \rightarrow 1 \mid n \rightarrow 2 * \text{exp} \ (n-1) \\
&= 2 * \text{exp} \ (k+1 - 1) \\
&= 2 * \text{exp} \ (k)
\end{align*}
\]

(by unfolding exp) (by evaluating case) (by math)
Theorem: For all natural numbers n,
\[\text{exp}(n) = 2^n. \]

Recall: Every natural number n is either 0 or it is k+1 (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: n == k+1:
\[
\begin{align*}
\text{exp}(k+1) \\
= \text{match } (k+1) \text{ with } 0 \rightarrow 1 \mid n \rightarrow 2 \ast \text{exp}(n-1) \\
= 2 \ast \text{exp}(k+1 - 1) \\
= 2 \ast \text{exp}(k) \\
= 2 \ast 2^k
\end{align*}
\]
(by unfolding exp) (by evaluating case) (by math) (by IH!)
Theorem: For all natural numbers n,
\[\text{exp}(n) = 2^n. \]

Recall: Every natural number n is either 0 or it is $k+2$ (where k is also a natural number). Hence, we follow the structure of the data and do our proof in two cases.

Proof:

Case: $n = k+1$:

\[
\begin{align*}
\text{exp}(k+1) &= \text{match } (k+1) \text{ with }\quad 0 \rightarrow 1 \mid n \rightarrow 2 \times \text{exp} (n - 1) \\
&= 2 \times \text{exp} (k+1 - 1) \\
&= 2 \times \text{exp} (k) \\
&= 2 \times 2^k \\
&= 2^{(k+1)}
\end{align*}
\]

(by unfolding exp)
(by evaluating case)
(by math)
(by IH!)
(by math)
QED!
Another example

Theorem: For all natural numbers \(n \),
\[
even(2*n) == true.
\]

Recall: Every natural number \(n \) is either 0 or \(k+1 \), where \(k \) is also a natural number.

Case: \(n == 0 \):
\[
\ldots
\]

Case: \(n == k+1 \):
\[
\ldots
\]

let rec even n = match n with
| 0 -> true
| 1 -> false
| n -> even (n-2)
Theorem: For all natural numbers n, even(2*n) == true.

Recall: Every natural number n is either 0 or k+1, where k is also a natural number.

Case: n == 0:
 even (2*0)
==

let rec even n =
let rec even n =
match n with
| 0 -> true
| 1 -> false
| n -> even (n-2)
Theorem: For all natural numbers \(n \),
\[
even(2*n) == \text{true}.
\]

Recall: Every natural number \(n \) is either 0 or \(k+1 \), where \(k \) is also a natural number.

Case: \(n == 0 \):
\[
even (2*0)
\]
\[
== even (0)
\]
\[
== \quad \text{(by math)}
\]
Another example

Theorem: For all natural numbers \(n \),
\[
\text{even}(2*n) = \text{true}.
\]

Recall: Every natural number \(n \) is either 0 or \(k+1 \), where \(k \) is also a natural number.

Case: \(n == 0 \):
\[
\begin{align*}
even (2*0) & \quad \text{(by math)} \\
== \text{even} (0) & \quad \text{(by def of even)} \\
== \text{match 0 of (0 -> true | 1 -> false | n -> even (n-2))} & \quad \text{(by evaluation)} \\
== \text{true}
\end{align*}
\]
Another example

Theorem: For all natural numbers n, even(2*n) == true.

Recall: Every natural number n is either 0 or k+1, where k is also a natural number.

Case: n == k+1:
 even (2*(k+1))

let rec even n =
 match n with
 | 0 -> true
 | 1 -> false
 | n -> even (n-2)
Another example

Theorem: For all natural numbers \(n \),

\[\text{even}(2*n) == \text{true}. \]

Recall: Every natural number \(n \) is either 0 or \(k+1 \), where \(k \) is also a natural number.

Case: \(n == k+1: \)

\[
\begin{align*}
\text{even } (2*(k+1)) \\
== \text{even } (2*k+2) \\
==
\end{align*}
\]

(by math)

```ocaml
let rec even n =
    match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
```
Another example

Theorem: For all natural numbers \(n \),
\[\text{even}(2 \times n) = \text{true}. \]

Recall: Every natural number \(n \) is either \(0 \) or \(k+1 \), where \(k \) is also a natural number.

Case: \(n = k+1 \):
\[
\begin{align*}
\text{even} \ (2 \times (k+1)) &= \text{even} \ (2 \times k + 2) \\
&= \text{match} \ 2 \times k + 2 \ \text{of} \ (0 \rightarrow \text{true} \ | \ 1 \rightarrow \text{false} \ | \ n \rightarrow \text{even} \ (n-2)) \\
&= \text{even} \ ((2 \times k + 2) - 2) \\
&= \text{even} \ (2 \times k)
\end{align*}
\]
(by math)
(by def of even)
(by evaluation)
(by math)

let rec even n =
match n with
| 0 -> true
| 1 -> false
| n -> even (n-2)
Theorem: For all natural numbers n, even(2*n) == true.

Recall: Every natural number n is either 0 or k+1, where k is also a natural number.

Case: n == k+1:
 even (2*(k+1))
== even (2*k+2)
== match 2*k+2 of (0 -> true | 1 -> false | n -> even (n-2))
== even ((2*k+2)-2)
== even (2*k)
== true
QED.
Template for Inductive Proofs on Natural Numbers

Theorem: For all natural numbers n, property of n.

Proof: By induction on natural numbers n.

Case: $n == 0$:

... write this down.

Case: $n == k+1$:

... justifications to use:

- simple math
- evaluation, reverse evaluation
- IH

cases must cover all natural numbers

proof methodology.
Template for Inductive Proofs on Natural Numbers

Theorem: For all natural numbers \(n \), property of \(n \).

Proof: By induction on natural numbers \(n \).

Case: \(n == 0 \):

\[... \]

Case: \(n == k+1 \):

\[... \]

Note there are other ways to cover all natural numbers:
- eg: case for 0, case for 1, case for \(k+2 \)

cases must cover all natural numbers
PROOFS ABOUT LIST-PROCESSORS
A Couple of Useful Functions

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
 match xs1 with
 | [] -> xs2
 | hd::tl -> hd :: cat tl xs2
Theorem: For all lists xs and ys,
\[
\text{length(cat } xs \ ys) = \text{length } xs + \text{length } ys
\]

Proof strategy:

- Proof by induction on the list xs? or on the list ys?
 - answering that question, may be the hardest part of the proof!
 - it tells you how to split up your cases
 - sometimes you just need to do some trial and error

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
 match xs1 with
 | [] -> xs2
 | head::tail -> head :: cat tail xs2

a clue: pattern matching on first argument.
In the theorem: cat xs ys
Hence induction on xs. Case split the same way as the program
Proofs About Lists

Theorem: For all lists \(xs \) and \(ys \),

\[
\text{length(cat} \; xs \; ys) = \text{length} \; xs + \text{length} \; ys
\]

Proof strategy:

• Proof by induction on the list \(xs \)

 – recall, a list may be of these two things:

 • \([\,]\) (the empty list)

 • \(\text{hd}::\text{tl} \) (a non-empty list, where \(\text{tl} \) is shorter)

 – a proof must cover both cases: \([\,]\) and \(\text{hd}::\text{tl} \)

 – in the second case, you will often use the inductive hypothesis
 on the smaller list \(\text{tl} \)

 – otherwise as before:

 • use folding/unfolding of OCaml definitions

 • use your knowledge of OCaml evaluation

 • use lemmas/properties you know of basic operations like :: and +
Proofs About Lists

Theorem: For all lists xs and ys,

$$\text{length}(\text{cat } xs \text{ ys}) = \text{length } xs + \text{length } ys$$

Proof: By induction on xs.

```plaintext
case $xs = [ ]$:

let rec length $xs =$
    match $xs$ with
    | [] -> 0
    | x::xs -> 1 + length $xs$

let rec cat $xs1$ $xs2 =$
    match $xs1$ with
    | [] -> $xs2$
    | hd::tl -> hd :: cat tl $xs2$
```
Proofs About Lists

Theorem: For all lists xs and ys,

$$\text{length}(\text{cat } xs \; ys) = \text{length } xs + \text{length } ys$$

Proof: By induction on xs.

case $xs = []$:

$$\text{length (cat } [] \; ys)$$ (LHS of theorem)

let rec length $xs =$
match xs with
| [] -> 0
| $x::xs$ -> 1 + length xs

let rec cat $xs1 \; xs2 =$
match $xs1$ with
| [] -> $xs2$
| $\text{hd}::\text{tl}$ -> $\text{hd} :: \text{cat } \text{tl} \; xs2$
Proofs About Lists

Theorem: For all lists \(xs\) and \(ys\),

\[
\text{length(cat } xs \text{ ys)} = \text{length } xs + \text{length } ys
\]

Proof: By induction on \(xs\).

- **case** \(xs = []\):
 - \(\text{length (cat [] ys)}\) \quad \text{(LHS of theorem)}
 - \(\text{length } ys\) \quad \text{(evaluate cat)}

```ml
let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
  match xs1 with
  | [] -> xs2
  | hd::tl -> hd :: cat tl xs2
```
Proofs About Lists

Theorem: For all lists `xs` and `ys`,

\[\text{length(cat } xs \ ys) = \text{length } xs + \text{length } ys \]

Proof: By induction on `xs`.

case `xs = []`:

\[
\begin{align*}
\text{length (cat } [] \ ys) &= \text{length } ys & \text{(LHS of theorem)} \\
= 0 + (\text{length } ys) &= \text{(evaluate cat)} \\
= 0 + (\text{length } ys) &= \text{(arithmetic)}
\end{align*}
\]
Proofs About Lists

Theorem: For all lists xs and ys,
\[
\text{length(cat } xs \; ys) = \text{length } xs + \text{length } ys
\]

Proof: By induction on xs.

case $xs = []$:
\[
\begin{align*}
\text{length (cat } [] \; ys) & \quad \text{(LHS of theorem)} \\
= \text{length } ys & \quad \text{(evaluate cat)} \\
= 0 + (\text{length } ys) & \quad \text{(arithmetic)} \\
= (\text{length } []) + (\text{length } ys) & \quad \text{(fold length)}
\end{align*}
\]

case done!

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
 match xs1 with
 | [] -> xs2
 | hd::tl -> hd :: cat tl xs2
Proofs About Lists

Theorem: For all lists \(xs\) and \(ys\),
\[
\text{length(cat } xs \text{ ys) = length } xs + \text{ length } ys
\]

Proof: By induction on \(xs\).

```plaintext
case xs = hd::tl
```

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
 match xs1 with
 | [] -> xs2
 | hd::tl -> hd :: cat tl xs2
Proofs About Lists

Theorem: For all lists \(xs \) and \(ys \),

\[
\text{length}(\text{cat } xs \ ys) = \text{length } xs + \text{length } ys
\]

Proof: By induction on \(xs \).

\[
\text{case } xs = \text{hd}::\text{tl} \\
\text{IH: length (cat tl ys) = length tl + length ys}
\]

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
 match xs1 with
 | [] -> xs2
 | hd::tl -> hd :: cat tl xs2
Proofs About Lists

Theorem: For all lists xs and ys,
\[
\text{length(\text{cat} \; xs \; ys)} = \text{length} \; xs + \text{length} \; ys
\]

Proof: By induction on xs.

case $xs = \text{hd}::\text{tl}$

IH: $\text{length (\text{cat} \; \text{tl} \; ys)} = \text{length} \; \text{tl} + \text{length} \; ys$

\[
\text{length (\text{cat} \; (\text{hd}::\text{tl}) \; ys)} \quad \text{(LHS of theorem)}
\]

==

```
let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs

let rec cat xs1 xs2 =
  match xs1 with
  | [] -> xs2
  | hd::tl -> hd :: cat tl xs2
```
Proofs About Lists

Theorem: For all lists xs and ys,
\[
\text{length}(\text{cat } \text{xs } \text{ys}) = \text{length } \text{xs} + \text{length } \text{ys}
\]

Proof: By induction on xs.

case xs = hd::tl
 IH: \(\text{length } (\text{cat } \text{tl } \text{ys}) = \text{length } \text{tl} + \text{length } \text{ys}\)

 \[
 \text{length } (\text{cat } (\text{hd}::\text{tl}) \text{ys}) = (\text{LHS of theorem})
 \]

 \[
 = \text{length } (\text{hd} :: (\text{cat } \text{tl} \text{ys})) \quad \text{(evaluate cat, take 2nd branch)}
 \]

 \[
 = \text{let rec length xs =}
 \]

let rec cat xs1 xs2 =
match xs1 with
 | [] -> 0
 | hd::tl -> hd :: cat tl xs2

match xs with
 | [] -> 0
 | x::xs -> 1 + length xs
Proofs About Lists

Theorem: For all lists xs and ys,

$$\text{length}(\text{cat } xs \ ys) = \text{length } xs + \text{length } ys$$

Proof: By induction on xs.

\[
\begin{align*}
\text{case } xs &= \text{hd}::\text{tl} \\
\text{IH: length } (\text{cat } \text{tl } ys) &= \text{length } \text{tl} + \text{length } ys
\end{align*}
\]

\[
\begin{align*}
\text{length } (\text{cat } (\text{hd}::\text{tl}) \ ys) &= (\text{LHS of theorem}) \\
&= \text{length } (\text{hd} :: (\text{cat } \text{tl } ys)) \\
&= 1 + \text{length } (\text{cat } \text{tl } ys) \\
&= \\
\end{align*}
\]

\[
\begin{align*}
\text{let rec length } xs &= \\
&= \text{match } xs \text{ with} \\
&\quad | [] \rightarrow 0 \\
&\quad | x::xs \rightarrow 1 + \text{length } xs
\end{align*}
\]

\[
\begin{align*}
\text{let rec cat } xs1 \ xs2 &= \\
&= \text{match } xs1 \text{ with} \\
&\quad | [] \rightarrow xs2 \\
&\quad | \text{hd}::\text{tl} \rightarrow \text{hd} :: \text{cat } \text{tl } xs2
\end{align*}
\]
Proofs About Lists

Theorem: For all lists xs and ys,

\[\text{length}(\text{cat} \; xs \; ys) = \text{length} \; xs + \text{length} \; ys \]

Proof: By induction on xs.

\[
\text{case } xs = \text{hd}:\text{tl} \\
\text{IH: } \text{length} \; (\text{cat} \; \text{tl} \; ys) = \text{length} \; \text{tl} + \text{length} \; ys
\]

\[
\text{length} \; (\text{cat} \; (\text{hd}:\text{tl}) \; ys) \\
== \text{length} \; (\text{hd} :: (\text{cat} \; \text{tl} \; ys)) \\
== 1 + \text{length} \; (\text{cat} \; \text{tl} \; ys) \\
== 1 + (\text{length} \; \text{tl} + \text{length} \; ys) \\
==
\]

\[
\text{let rec length xs =} \\
\quad
\begin{cases}
\quad | [] -> 0 \\
\quad | x::xs -> 1 + \text{length} \; xs
\end{cases}
\]

\[
\text{let rec cat xs1 xs2 =} \\
\quad
\begin{cases}
\quad | [] -> xs2 \\
\quad | hd::tl -> hd :: cat tl xs2
\end{cases}
\]
Proofs About Lists

Theorem: For all lists xs and ys,

$$\text{length(cat } xs \text{ ys)} = \text{length } xs + \text{length } ys$$

Proof: By induction on xs.

\[
\begin{align*}
\text{case } xs &= \text{hd}::\text{tl} \\
\text{IH: } \text{length } (\text{cat } \text{tl } ys) &= \text{length } \text{tl} + \text{length } ys
\end{align*}
\]

\[
\begin{align*}
\text{length } (\text{cat } (\text{hd}::\text{tl}) \text{ ys}) &= \text{LHS of theorem} \\
\text{== length } (\text{hd } :: (\text{cat } \text{tl } ys)) &= \text{evaluate cat, take } 2^{\text{nd}} \text{ branch} \\
\text{== 1 + length } (\text{cat } \text{tl } ys) &= \text{evaluate length, take } 2^{\text{nd}} \text{ branch} \\
\text{== 1 + (length } \text{tl } + \text{length } ys) &= \text{by IH} \\
\text{== length } (\text{hd}::\text{tl}) + \text{length } ys &= \text{reparenthesizing and evaling length in reverse we have RHS with hd}::\text{tl for xs}
\end{align*}
\]

\[\text{case done!}\]

\[
\begin{align*}
\text{let rec length } xs &= \\
&\text{match } xs \text{ with} \\
&| [] -> 0 \\
&| x::xs -> 1 + \text{length } xs
\end{align*}
\]

\[
\begin{align*}
\text{let rec cat } xs1 \text{ xs2} &= \\
&\text{match } xs1 \text{ with} \\
&| [] -> xs2 \\
&| \text{hd}::\text{tl} -> \text{hd } :: \text{cat } \text{tl } xs2
\end{align*}
\]
Be careful with the Induction Hypothesis!

Theorem: For all lists xs and ys,

\[\text{length}(\text{cat } xs \text{ ys}) = \text{length } xs + \text{length } ys \]

Proof: By induction on xs.

\[
\begin{align*}
\text{case } xs &= \text{hd} :: \text{tl} \\
\text{IH: } \text{length } (\text{cat } \text{tl } ys) &= \text{length } \text{tl} + \text{length } ys
\end{align*}
\]

\[
\begin{align*}
\text{length } (\text{cat } (\text{hd} :: \text{tl}) \text{ ys}) &= \text{length } (\text{hd } :: (\text{cat } \text{tl } ys)) \\
&= 1 + \text{length } (\text{cat } \text{tl } ys) \\
&= 1 + (\text{length } \text{tl} + \text{length } ys) \\
&= \text{length } (\text{hd} :: \text{tl}) + \text{length } ys
\end{align*}
\]

\[
\begin{align*}
\text{length } (\text{cat } (\text{hd} :: \text{tl}) \text{ ys}) &= 1 + \text{length } (\text{cat } \text{tl } ys) \\
&= 1 + (\text{length } \text{tl} + \text{length } ys) \\
&= \text{length } (\text{hd} :: \text{tl}) + \text{length } ys
\end{align*}
\]

Induction hypothesis is a function of one variable (in this case, xs)

The use of the IH must be at a smaller value (in this case, “tl” is smaller than “xs”)

In your proofs, it should be really obvious
- which variable the IH is supposed to be a function of
- that your induction is on that variable
- that you’re applying the IH at smaller values

If you’re not sure it’s obvious, just say explicitly in your proof: which variable it is, and why you claim you’re applying it at smaller values
Be careful with the Induction Hypothesis!

Theorem: For all lists \(xs\) and \(ys\),

\[
\text{length}(\text{cat} \; xs \; ys) = \text{length} \; xs + \text{length} \; ys
\]

Proof: By induction on \(xs\).

Induction hypothesis is a function of one variable (in this case, \(xs\)).

In more complicated proofs, the induction hypothesis is a function of **one structure** where the ordering of elements in the structure is **well-founded** (there are no infinite descending chains). Eg, we could do induction on pairs of naturals \((x, y)\) where pairs are ordered lexicographically. ie:

\[
(x1, y1) > (x2, y2) \iff x1 > x2 \text{ or } (x1 = x2 \text{ and } y1 > y2)
\]
Another List example

Theorem: For all lists xs,
\[
\text{add_all}(\text{add_all}\ xs\ a)\ b\ ==\ \text{add_all}\ xs\ (a+b)
\]

Proof: By induction on xs.

case xs = []:

\[
\text{add_all}(\text{add_all}\ []\ a)\ b\quad \text{(LHS of theorem)}
\]

==

let rec add_all xs c =
 match xs with
 | [] -> []
 | hd::tl -> (hd+c)::add_all tl c
Another List example

Theorem: For all lists xs,

$$\text{add_all}\ (\text{add_all}\ xs\ a)\ b\ ==\ \text{add_all}\ xs\ (a+b)$$

Proof: By induction on xs.

```ml
let rec add_all xs c =  
  match xs with  
  | [ ] -> [ ]  
  | hd::tl -> (hd+c)::add_all tl c
```

Case $xs = []$:

$$\text{add_all}\ (\text{add_all}\ []\ a)\ b\quad (\text{LHS of theorem})$$

$$==\ \text{add_all}\ []\ b\quad (\text{by evaluation of }\ add_all)$$

$$==$$
Another List example

Theorem: For all lists \(xs\),

\[
\text{add_all} (\text{add_all} \ xs \ a) \ b \equiv \text{add_all} \ xs \ (a+b)
\]

Proof: By induction on \(xs\).

case \(xs = [\]\):

\[
\text{add_all} (\text{add_all} \ [\] \ a) \ b
\equiv \text{add_all} \ [\] \ b
\equiv [\]
\equiv
\]

let rec add_all \ xs \ c =
 match \ xs \ with
 | [] -> []
 | \ hd::tl \ -> (hd+c)::add_all \ tl \ c
Theorem: For all lists \(xs\),
\[
\text{add_all\ (add_all\ \text{xs}\ a)\ b\ ==\ add_all\ \text{xs}\ (a+b)}
\]

Proof: By induction on \(xs\).

\[
\begin{align*}
\text{case } xs &= []: \\
\quad \text{add_all\ (add_all\ []\ a)\ b} &\quad \text{(LHS of theorem)} \\
&=\ add_all\ []\ b &\quad \text{(by evaluation of add_all)} \\
&= [] &\quad \text{(by evaluation of add_all)} \\
&=\ add_all\ []\ (a + b) &\quad \text{(by evaluation of add_all)}
\end{align*}
\]

let rec add_all xs c =
 match xs with
 | [] -> []
 | hd::tl -> (hd+c)::add_all tl c
Theorem: For all lists \(xs \),
\[
\text{add_all \ (\text{add_all \ } xs \ \ a) \ \ b \ \ == \ \ \text{add_all \ } xs \ \ (a+b)
\]

Proof: By induction on \(xs \).

\[
\text{case } xs = \text{hd :: tl:}
\]
\[
\text{add_all \ (\text{add_all \ } (\text{hd :: tl}) \ \ a) \ \ b} \quad \text{(LHS of theorem)}
\]

\[
==
\]

let rec add_all \ xs \ c =
match \ xs \ with
| [] -> []
| \ text{hd::tl} \ -> (\text{hd+c)::add_all \ tl \ c}
Another List example

Theorem: For all lists \(xs \),
\[
\text{add_all} \ (\text{add_all} \ xs \ a) \ b \ == \ \text{add_all} \ xs \ (a+b)
\]

Proof: By induction on \(xs \).

case \(xs = \text{hd} :: \text{tl} \):

\[
\text{add_all} \ (\text{add_all} \ (\text{hd} :: \text{tl}) \ a) \ b \ == \text{add_all} \ ((\text{hd}+a) :: \text{add_all} \ \text{tl} \ a) \ b
\]

(\text{LHS of theorem})

(by eval inner add_all)

==

\[
\text{let rec add_all} \ xs \ c =
\text{match} \ xs \ \text{with}
\ |
\ [] \ -> \ []
\ |
\ \text{hd} :: \text{tl} \ -> \ (\text{hd}+c) :: \text{add_all} \ \text{tl} \ c
\]

87
Another List example

Theorem: For all lists \(xs\),
\[
\text{add_all (add_all \(xs\) \(a\)) \(b\) == add_all \(xs\) (\(a+b\))}
\]

Proof: By induction on \(xs\).

case \(xs = \text{hd :: tl}\):

\[
\begin{align*}
\text{add_all (add_all (\text{hd :: tl}) \(a\)) \(b\)} & \quad \text{(LHS of theorem)} \\
== \text{add_all ((hd+a) :: add_all \(tl\) \(a\)) \(b\)} & \quad \text{(by eval inner add_all)} \\
== (hd+a+b) :: (add_all (add_all \(tl\) \(a\)) \(b\)) & \quad \text{(by eval outer add_all)} \\
== \\
\end{align*}
\]

let rec add_all \(xs\) \(c\) =
match \(xs\) with
| [] -> []
| \(\text{hd::tl}\) -> (hd+c)::add_all \(tl\) \(c\)
Another List example

Theorem: For all lists \(xs\),

\[
\text{add_all} \ (\text{add_all} \ xs \ a) \ b \ == \ \text{add_all} \ xs \ (a+b)
\]

Proof: By induction on \(xs\).

\[
\text{case } xs = \text{hd} :: \text{tl}:
\]

\[
\text{add_all} \ (\text{add_all} \ (\text{hd} :: \text{tl}) \ a) \ b \quad \text{(LHS of theorem)}
\]
\[
== \ \text{add_all} \ ((\text{hd}+a) :: \text{add_all} \ \text{tl} \ a) \ b \quad \text{(by eval inner add_all)}
\]
\[
== (\text{hd}+a+b) :: (\text{add_all} (\text{add_all} \ \text{tl} \ a) \ b) \quad \text{(by eval outer add_all)}
\]
\[
== (\text{hd}+a+b) :: \text{add_all} \ \text{tl} (a+b) \quad \text{(by IH)}
\]

let rec add_all xs c =
match xs with
| [] -> []
| hd::tl -> (hd+c)::add_all tl c
Another List example

Theorem: For all lists xs,
\[\text{add}_\text{all} (\text{add}_\text{all} \text{a} \text{b}) = \text{add}_\text{all} \text{a} (\text{a+b}) \]

Proof: By induction on xs.

case \(\text{xs} = \text{hd} :: \text{tl}\):

\[
\begin{align*}
\text{add}_\text{all} (\text{add}_\text{all} (\text{hd} :: \text{tl}) \text{a} \text{b}) & \quad \text{(LHS of theorem)} \\
\text{== add}_\text{all} ((\text{hd+a}) :: \text{add}_\text{all} \text{tl} \text{a} \text{b}) & \quad \text{(by eval inner add}_\text{all}\text{)} \\
\text{== (hd+a+b) :: (add}_\text{all} (\text{add}_\text{all} \text{tl} \text{a}) \text{b}) & \quad \text{(by eval outer add}_\text{all}\text{)} \\
\text{== (hd+a+b) :: add}_\text{all} \text{tl} (\text{a+b}) & \quad \text{(by IH)} \\
\text{== (hd+(a+b)) :: add}_\text{all} \text{tl} (\text{a+b}) & \quad \text{(associativity of +)}
\end{align*}
\]

let rec add_all xs c =
match xs with
| [] -> []
| hd::tl -> (hd+c)::add_all tl c
Theorem: For all lists xs,

$$\text{add_all\ (add_all\ xs\ a)\ b} \equiv \text{add_all\ xs\ (a+b)}$$

Proof: By induction on xs.

case $xs = \text{hd :: tl}$:

$$\begin{align*}
\text{add_all\ (add_all\ (\text{hd :: tl})\ a)\ b} & \quad \text{(LHS of theorem)} \\
\equiv & \quad \text{add_all\ ((hd+a) :: add_all\ tl\ a)\ b} \quad \text{(by eval inner add_all)} \\
\equiv & \quad (hd+a+b) :: (\text{add_all\ (add_all\ tl\ a)\ b}) \quad \text{(by eval outer add_all)} \\
\equiv & \quad (hd+a+b) :: \text{add_all\ tl\ (a+b)} \quad \text{(by IH)} \\
\equiv & \quad (hd+(a+b)) :: \text{add_all\ tl\ (a+b)} \quad \text{(associativity of +)} \\
\equiv & \quad \text{add_all\ (hd::tl)\ (a+b)} \quad \text{(by (reverse) eval of add_all)}
\end{align*}$$

let rec add_all xs c =
 match xs with
 | [] -> []
 | hd::tl -> (hd+c)::add_all tl c
Template for Inductive Proofs on Lists

Theorem: For all lists xs, property of xs.

Proof: By induction on lists xs.

Case: $xs == []$:
...

Case: $xs == \text{hd :: tl}$:
...

Note there are other ways to cover all lists:
• eg: case for $[]$, case for $x1::[]$, case for $x1::x2::tl$
Template for Inductive Proofs on *any datatype*

```plaintext
type ty = A of ... | B of ... | C of ... | D ;;
```

Theorem: For all ty x, property of x.

Proof: By induction on the constructors of ty.

Case: x == A(...):

...
Case: x == B(...):

...
Case: x == C(...):

...
Case: x == D:

...

cases must cover all the constructors of the datatype
SUMMARY
Summary

• Proofs about programs are structured similarly to the programs themselves:
 – types tell you what kinds of values your proofs/programs operate over
 – types suggest how to break down proofs/programs in to cases
 – when programs that use recursion on smaller values, their proofs appeal to the inductive hypothesis on smaller values

• Key proof ideas:
 – two expressions that evaluate to the same value are equal
 – substitute equals for equals
 – use proof by induction to prove correctness of recursive functions