A Functional Evaluation Model

COS 326
David Walker
Princeton University
In order to be able to write a program, you have to have a solid grasp of how a programming language works.

We often call the definition of “how a programming language works” its *semantics*.

There are many kinds of programming language semantics.

In this lecture, we will look at O’Caml’s *call-by-value* evaluation:

- First, informally, giving *program rewrite rules by example*
- Second, using code, by specifying an *OCaml interpreter* in OCaml
- Third, more formally, using logical *inference rules*

In each case, we are specifying what is known as OCaml's *operational semantics*.
O’CAML BASICS:
CORE EXPRESSION EVALUATION
Evaluation

• Execution of an OCaml expression
 – produces a value
 – and may have some effect (e.g.: it may raise an exception, print a string, read a file, or store a value in an array)

• A lot of OCaml expressions have no effect
 – they are pure
 – they produce a value and do nothing more
 – the pure expressions are the easiest kinds of expressions to reason about

• We will focus on evaluation of pure expressions
Evaluation of Pure Expressions

• Given an expression e, we write:

$\ e \rightarrow v \$

to state that expression e evaluates to value v

• Note that "$e \rightarrow v$" is not itself a program -- it is some notation that we use to talk about how programs work
Evaluation of Pure Expressions

• Given an expression e, we write:
 \[e \rightarrow v \]

 to state that expression e evaluates to value v

• Some examples:
Evaluation of Pure Expressions

• Given an expression e, we write:

\[e \rightarrow v \]

to state that expression e evaluates to value v

• Some examples:

\[1 + 2 \]
Evaluation of Pure Expressions

• Given an expression e, we write:

\[e \rightarrow v \]

...to state that expression e evaluates to value v

• Some examples:

\[1 + 2 \rightarrow 3 \]
Evaluation of Pure Expressions

• Given an expression e, we write:

 $e \rightarrow v$

 to state that expression e evaluates to value v

• Some examples:

 $1 + 2 \rightarrow 3$

 2
Evaluation of Pure Expressions

• Given an expression e, we write:

$$e \rightarrow v$$

to state that expression e evaluates to value v

• Some examples:

1 + 2 \rightarrow 3

2 \rightarrow 2

values step to values
Evaluation of Pure Expressions

• Given an expression e, we write:

\[e \rightarrow v \]

to state that expression e evaluates to value v

• Some examples:

\[1 + 2 \rightarrow 3 \]

\[2 \rightarrow 2 \]

\[\text{int}_\text{to}_\text{string} \ 5 \rightarrow "5" \]
Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to expression e':

$e \rightarrow e'$
Evaluation of Pure Expressions

More generally, we say expression \(e \) (partly) evaluates to expression \(e' \):

\[
e \rightarrow e'
\]

Evaluation is \textit{complete} when \(e' \) is a value

– In general, I’ll use the letter “\(v \)” to represent an arbitrary value
– The letter “\(e \)” represents an arbitrary expression
– Concrete numbers, strings, characters, etc. are all values, as are:
 • tuples, where the fields are values
 • records, where the fields are values
 • datatype constructors applied to a value
 • \textit{functions}
Evaluation of Pure Expressions

• Some expressions (all the interesting ones!) take many steps to evaluate them:

\[(2 \times 3) + (7 \times 5)\]
Evaluation of Pure Expressions

- Some expressions (all the interesting ones!) take many steps to evaluate them:

\[(2 \times 3) + (7 \times 5)\]
\[\rightarrow 6 + (7 \times 5)\]
Evaluation of Pure Expressions

- Some expressions (all the interesting ones!) take many steps to evaluate them:

\[(2 \times 3) + (7 \times 5)\]

\[\rightarrow 6 + (7 \times 5)\]

\[\rightarrow 6 + 35\]
Some expressions (all the interesting ones!) take many steps to evaluate them:

\[(2 \times 3) + (7 \times 5)\]
\[\rightarrow 6 + (7 \times 5)\]
\[\rightarrow 6 + 35\]
\[\rightarrow 41\]
Some expressions do not compute a value and it is not obvious how to proceed:

\[\text{"hello" + 1 --> ????} \]

A strongly typed language rules out a lot of nonsensical expressions that compute no value, like the one above.

Other expressions compute no value but raise an exception:

\[7 / 0 --> \text{raise Divide_by_zero} \]

Still others simply fail to terminate ...
Let Expressions: Evaluate using Substitution

This must be already a value

let x = 30 in
let y = 12 in
x + y

-->

let y = 12 in
30 + y

-->

30 + 12

--> 42
Let Expressions: Evaluate using Substitution

```
let x = 30 in
let y = 12 in
x+y
```

This must be already a value

```
let x = 15*2 in
let y = 12 in
x+y
```

otherwise, first evaluate inside the bound expression

```
let x = 30 in
let y = 12 in
x+y
```
Informal Evaluation Model

To evaluate a function call “\(f \ a \)”

- first evaluate \(f \) until we get a function value (\(\text{fun } x \rightarrow e \))
- then evaluate \(a \) until we get an argument value \(v \)
- then substitute \(v \) for \(x \) in \(e \), the function body
- then evaluate the resulting expression.

\[
\text{(let } f = (\text{fun } x \rightarrow x + 1) \text{ in } f) (30+11) \rightarrow
\]

\[
(\text{fun } x \rightarrow x + 1) (30 + 11) \rightarrow
\]

\[
(\text{fun } x \rightarrow x + 1) 41 \rightarrow
\]

\[
41 + 1 \rightarrow 42
\]

This is why we say OCaml is “call by value”
Another example:

```plaintext
let add x y = x+y in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
```
Recall the syntactic sugar:

```ocaml
let add = fun x -> (fun y -> x+y) in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
```
Informal Evaluation Model

Then we use the let rule – we substitute the value for add:

```ocaml
let add = fun x -> (fun y -> x+y) in
let inc = add 1 in
let dec = add (-1) in

dec(inc 42)
```

-->

```ocaml
let inc = (fun x -> (fun y -> x+y)) 1 in
let dec = (fun x -> (fun y -> x+y)) -1 in

dec(inc 42)
```

functions are values
let inc = (fun x -> (fun y -> x+y)) 1 in
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec(inc 42)

-->

let inc = fun y -> 1+y in
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec(inc 42)

not a value; must reduce before substituting for inc
let inc = \(y \rightarrow 1+y \) in
let dec = (\(x \rightarrow (\(y \rightarrow x+y) \) \)) (-1) in
dec(inc 42)

-->

let dec = (\(x \rightarrow (\(y \rightarrow x+y) \) \)) (-1) in
dec((\(y \rightarrow 1+y \) \)) 42)
Next: simplify dec’s definition using the function-call rule.

```
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec((fun y -> 1+y) 42)

--> 

let dec = fun y -> -1+y in
dec((fun y -> 1+y) 42)
```

now a value
And we can use the let-rule now to substitute \texttt{dec}:

\begin{verbatim}
let dec = fun y -> -1+y in
dec((fun y -> 1+y) 42) -->

(fun y -> -1+y) ((fun y -> 1+y) 42)
\end{verbatim}
Now we can’t yet apply the first function because the argument is not yet a value – it’s a function call. So we need to use the function-call rule to simplify it to a value:

\[
\text{(fun } y \rightarrow -1 + y) \ (\text{(fun } y \rightarrow 1 + y) \ 42) \rightarrow
\]

\[
\text{(fun } y \rightarrow -1 + y) \ (1 + 42) \rightarrow
\]

\[
\text{(fun } y \rightarrow -1 + y) \ 43 \rightarrow
\]

\[-1 + 43 \rightarrow
\]

\[42\]
Consider the following OCaml code:

```
let x = 30 in
let y = 12 in
x+y;;
```

Does this evaluate any differently than the following?

```
let a = 30 in
let b = 12 in
a+b;;
```
A basic principle of programs is that systematically changing the names of variables shouldn’t cause the program to behave any differently – it should evaluate to the same thing.

```
let x = 30 in
let y = 12 in
x+y;;
```

But we do have to be careful about *systematic* change.

```
let a = 30 in
let a = 12 in
a+a;;
```

Systematic change of variable names is called *alpha-conversion*.
Substitution

Wait a minute, how do we evaluate this using the let-rule? If we substitute 30 for “a” naively, then we get:

```
let a = 30 in
let a = 12 in
a+a
```

```
let 30 = 12 in
30+30
```

Which makes no sense at all!
Besides, Ocaml returns 24 not 60.
What went wrong with our informal model?
Scope and Modularity

- Lexically scoped (a.k.a. statically scoped) variables have a simple rule: the nearest enclosing “let” in the code defines the variable.

- So when we write:

```plaintext
let a = 30 in
let a = 12 in
a+a;;
```

- we know that the “a+a” corresponds to “12+12” as opposed to “30+30” or even weirder “30+12”.
A Revised Let-Rule:

- To evaluate "let $x = e_1$ in e_2":
 - First, evaluate e_1 to a value v.
 - Then substitute v for the corresponding uses of x in e_2.
 - Then evaluate the resulting expression.

```
let a = 30 in
let a = 12 in
a+a

--->

let a = 12 in
a+a

--->

12+12

--->

24
```

This “a” doesn’t correspond to the uses of “a” below.

So when we substitute 30 for it, it doesn’t change anything.
• But what does “corresponding uses” mean?

• Consider:

```ml
let a = 30 in
let a = (let a = 3 in a*4) in
a+a;;
```
We can view a program as a tree – the parentheses and precedence rules of the language help determine the structure of the tree.

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```

==

```
(let a = (30) in
 (let a =
   (let a = (3) in (a*4))
in
  (a+a)))
```
An occurrence of a variable where we are defining it via let is said to be a *binding occurrence* of the variable.

```ocaml
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```
A non-binding occurrence of a variable is a *use* of a variable as opposed to a definition.

```plaintext
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```
Given a variable occurrence, we can find where it is bound by ...

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```
crawling up the tree to the nearest enclosing let...

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;
crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```
crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
   (let a = 3 in a*4)
in
a+a;;
```
and checking if the “let” binds the variable – if so, we’ve found the nearest enclosing definition. If not, we keep going up.

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;
Now we can also systematically rename the variables so that it’s not so confusing. Systematic renaming is called \textit{alpha-conversion}.

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```
Start with a let, and pick a fresh variable name, say “x”

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;
Rename the binding occurrence from “a” to “x”.

```haskell
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```
Then rename all of the occurrences of the variables that this let binds.

```ocaml
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```
There are none in this case!

\[
\text{let } x = 30 \text{ in } \text{let } a = (\text{let } a = 3 \text{ in } a \times 4) \text{ in } a + a;\]

These a’s are bound by this let.
There are none in this case!

```plaintext
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```
Let’s do another let, renaming “a” to “y”.

```
let x = 30 in
let y =
  (let a = 3 in a*4)
in
a+y;;
```
Let’s do another let, renaming “a” to “y”.

```
let x = 30 in
let y =
  (let a = 3 in a*4)
in
y+y;;
```
And if we rename the other let to “z”:

```
let x = 30 in
let y =
  (let z = 3 in z*4)
in
y+y;;
```
And if we rename the other let to “z”:

```
let x = 30 in
let y =
    (let z = 3 in z*4)
in
y+y;;
```
AN OCAML DEFINITION
OF OCAML EVALUATION
Implementing an Interpreter

text file containing program as a sequence of characters

```
let x = 3 in 
x + x
```

data structure representing program

```
Let ("x", 
    Num 3, 
    Binop(Plus, Var "x", Var "x"))
```

data structure representing result of evaluation

```
Num 6
```

text file/stdout containing with formatted output

Pretty Printing

Evaluation

the data type and evaluator tell us a lot about program semantics
We can define a datatype for simple OCaml expressions:

```
type variable = string ;;
type op = Plus | Minus | Times | ... ;;
type exp =
  | Int_e of int
  | Op_e of exp * op * exp
  | Var_e of variable
  | Let_e of variable * exp * exp ;;
```
We can define a datatype for simple OCaml expressions:

```ocaml
type variable = string ;;
type op = Plus | Minus | Times | ... ;;
type exp =
  | Int_e of int
  | Op_e of exp * op * exp
  | Var_e of variable
  | Let_e of variable * exp * exp ;;

let three = Int_e 3 ;;
let three_plus_one =
  Op_e (Int_e 1, Plus, Int_e 3) ;;
```
We can represent the OCaml program:

```ocaml
let x = 30 in
let y =
  (let z = 3 in
   z*4)
in
y+y;;
```

as an exp value:

```plaintext
Let_e(“x”, Int_e 30,
  Let_e(“y”,
    Let_e(“z”, Int_e 3,
      Op_e(Var_e “z”, Times, Int_e 4)),
    Op_e(Var_e “y”, Plus, Var_e “y”))
```
Notice how this reflects the “tree”:

Let_e("x", Int_e 30,
 Let_e("y", Let_e("z", Int_e 3,
 Op_e(Var_e "z", Times, Int_e 4)),
 Op_e(Var_e "y", Plus, Var_e "y"))

```
let x = 30
let y = let z = 3 *
        y + y
```

![Diagram of the tree structure corresponding to the code snippet.](image-url)
Free versus Bound Variables

```plaintext
type exp =
| Int_e of int
| Op_e of exp * op * exp
| Var_e of variable
| Let_e of variable * exp * exp
```

This is a **free** occurrence of a variable
Free versus Bound Variables

```ocaml
type exp =
    | Int_e of int
    | Op_e of exp * op * exp
    | Var_e of variable
    | Let_e of variable * exp * exp
```

This is a **free** occurrence of a variable

This is a **binding** occurrence of a variable