Poly-HO!

COS 326
David Walker
Princeton University

polymorphic, higher-order programming
Some Design & Coding Rules
Some Design & Coding Rules

• *Laziness* can be a really good force in design.

• Never write the same code twice.
 – factor out the common bits into a reusable procedure.
 – better, use someone else’s (well-tested, well-documented, and well-maintained) procedure.

• Why is this a good idea?
 – why don’t we just cut-and-paste snippets of code using the editor instead of abstracting them into procedures?
Some Design & Coding Rules

• *Laziness* can be a really good force in design.

• Never write the same code twice.
 – factor out the common bits into a reusable procedure.
 – better, use someone else’s (well-tested, well-documented, and well-maintained) procedure.

• Why is this a good idea?
 – why don’t we just cut-and-paste snippets of code using the editor instead of abstracting them into procedures?
 – find and fix a bug in one copy, have to fix in all of them.
 – decide to change the functionality, have to track down all of the places where it gets used.
Factoring Code in OCaml

Consider these definitions:

```ocaml
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```
Consider these definitions:

```ocaml
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```

The code is almost identical – factor it out!
Factoring Code in OCaml

A \textit{higher-order} function captures the recursion pattern:

\begin{verbatim}
let rec map (f:int->int) (xs:int list) : int list =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);
\end{verbatim}
A higher-order function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);;
```

Uses of the function:

```ocaml
let inc x = x+1;;
let inc_all xs = map inc xs;;
```
A higher-order function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);;
```

Uses of the function:

```ocaml
let inc x = x+1;;
let inc_all xs = map inc xs;;

let square y = y*y;;
let square_all xs = map square xs;;
```
Factoring Code in OCaml

A higher-order function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)
```

Uses of the function:

```ocaml
let inc_all xs = map (fun x -> x + 1) xs

let square_all xs = map (fun y -> y * y) xs
```

We can use an anonymous function instead. Originally, Church wrote this function using \(\lambda \) instead of `fun`:

\((\lambda x. x+1) \) or \((\lambda x. x*x) \)
Another example

\[
\text{let rec sum (xs:int list) : int = }
\quad \text{match xs with}
\quad \quad | [] -> 0
\quad \quad | hd::tl -> hd + (sum tl)
\]

\[
\text{let rec prod (xs:int list) : int = }
\quad \text{match xs with}
\quad \quad | [] -> 1
\quad \quad | hd::tl -> hd * (prod tl)
\]

\textit{Goal}: Create a function called reduce that when supplied with a few arguments can implement both sum and prod. Define sum2 and prod2 using reduce.

\textit{Goal}: If you finish early, use map and reduce together to find the sum of the squares of the elements of a list.

(Try it)
let add x y = x + y;;
let mul x y = x * y;;

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

let sum xs = reduce add 0 xs ;;
let prod xs = reduce mul 1 xs ;;
Using Anonymous Functions

```ocaml
let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);

let sum xs = reduce (fun x y -> x+y) 0 xs ;;
let prod xs = reduce (fun x y -> x*y) 1 xs ;;
```
Using Anonymous Functions

```ocaml
let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);

let sum xs = reduce (fun x y -> x+y) 0 xs ;;
let prod xs = reduce (fun x y -> x*y) 1 xs ;;

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```
(nonrecursive) Function declarations are actually abbreviations:

```ocaml
let square x = x*x ;;
let add x y = x+y ;;
```

are *syntactic sugar* for:

```ocaml
let square = (fun x -> x*x) ;;
let add = (fun x y -> x+y) ;;
```

So, *functions are values* we can bind to a variable, just like 3 or “moo” or true.

OCaml obeys the *principle of orthogonal language design*.
One argument, one result

Simplifying further:

Let \(\text{add} = (\text{fun } x \ y \to x+y) \)

is shorthand for:

Let \(\text{add} = (\text{fun } x \to (\text{fun } y \to x+y)) \)

That is, \(\text{add} \) is a function which:

- when given a value \(x \), **returns a function** \((\text{fun } y \to x+y) \) which:
 - when given a value \(y \), returns \(x+y \).
Curried Functions

fun x -> (fun y -> x+y) (* curried *)
fun x y -> x + y (* curried *)
fun (x,y) -> x+y (* uncurried *)

Currying: encoding a multi-argument function using nested, higher-order functions.

Named after the logician **Haskell B. Curry** (1950s).

– was trying to find minimal logics that are powerful enough to encode traditional logics.
– much easier to prove something about a logic with 3 connectives than one with 20.
– the ideas translate directly to math (set & category theory) as well as to computer science.
– (actually, **Moses Schönfinkel** did some of this in 1924)
– (thankfully, we don't have to talk about **Schönfinkelled** functions)
What is the type of add?

Add’s type is:

```
let add = (fun x -> (fun y -> x+y))
```

which we can write as:

```
int -> (int -> int)
```

That is, the arrow type is right-associative.
What’s so good about Currying?

In addition to simplifying the language (orthogonal design), currying functions so that they only take one argument leads to two major wins:

1. We can *partially apply* a function.
2. We can more easily *compose* functions.
Partial Application

Curried functions allow defs of new, *partially applied* functions:

```plaintext
let add = (fun x -> (fun y -> x+y)) ;;
```

Equivalent to writing:

```plaintext
let inc = add 1;;
```

which is equivalent to writing:

```plaintext
let inc = (fun y -> 1+y) ;;
```

also:

```plaintext
let inc2 = add 2;;
let inc3 = add 3;;
```
SIMPLE REASONING ABOUT HIGHER-ORDER FUNCTIONS
We can factor this program:

```ml
let square_all ys =
  match ys with
  | [] -> []
  | hd::tl -> (square hd)::(square_all tl)
;;
```

into this program:

```ml
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);

let square_all = map square;;
```

a more concise and readable definition of square_all
(assuming we already had defined map)
Goal: Rewrite definitions so my program is simpler, easier to understand, more concise, ...

Question: What are the reasoning principles for rewriting programs without breaking them? For reasoning about the behavior of programs? About the equivalence of two programs?

I want some *rules* for doing so that never fail.
Simple Equational Reasoning

Rewrite 1 (Function de-sugaring):

\[
\text{let } f \ x = \text{body} \quad \Rightarrow \quad \text{let } f = (\text{fun } x \rightarrow \text{body})
\]

Rewrite 2 (Substitution):

\[
(\text{fun } x \rightarrow \ldots \ x \ldots) \ arg \quad \Rightarrow \quad \ldots \ arg \ldots
\]

if \(arg \) is a value or, when executed, \textbf{will always terminate without effect} and produce a value

Rewrite 3 (Eta-expansion):

\[
\text{let } f = \text{def} \quad \Rightarrow \quad \text{let } f \ x = (\text{def}) \ x
\]

if \(f \) has a function type

chose name \(x \) wisely so it does not shadow other names used in \(\text{def} \)
Eta-expansion is an example of Leibniz’s law

Gottfried Wilhelm von Leibniz
German Philosopher
1646 - 1716

Leibniz’s law:

If every predicate possessed by x is also possessed by y and vice versa, then entities x and y are identical. Frequently invoked in modern logic and philosophy.

Rewrite 3 (Eta-expansion):

```
let f = def
```

if f has a function type

```
let f = fun x -> (def)x
```

chose name x wisely so it does not shadow other names used in def
Eliminating the Sugar in Map

```ocaml
define rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);
```
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);;

let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)));

Eliminating the Sugar in Map
Consider square_all

```ocaml
let rec map =
  (fun f ->
    (fun xs ->
      match xs with
      | [] -> []
      | hd::tl -> (f hd)::(map f tl)));;

let square_all =
  map square ;;
```
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)));

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
)
) square ;;
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))));;

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
)
) square ;;
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)));

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))
)
) square ;;
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)));

let square_all =
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl));;

argument square substituted for parameter f

argument square substituted for parameter f
Expanding map square

```
let rec map =
  (fun f ->
    (fun xs ->
      match xs with
      | [] -> []
      | hd::tl -> (f hd)::(map f tl))));;

let square_all ys =
  (fun xs ->
    match xs with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl)
    ) ys
  ;;
```

add argument via eta-expansion
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))));;

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);

let square_all xs = map square xs

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)
 ;;
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);

let square_all xs = map square xs

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl);

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl);
We saw this:

```ocaml
let rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);

let square_all ys = map square
```

Is equivalent to this:

```ocaml
let square_all ys =
    match ys with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl);
```

Moral of the story
- (1) OCaml’s HOT (higher-order, typed) functions capture recursion patterns
- (2) we can figure out what is going on by *equational reasoning*.
- (3) ... but we typically need to do *proofs by induction* to reason about recursive (inductive) functions
POLY-HO!
Here’s an annoying thing

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);
```

What if I want to increment a list of floats?
Alas, I can’t just call this map. It works on ints!
Here’s an annoying thing

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);;
```

What if I want to increment a list of floats?
Alas, I can’t just call this map. It works on ints!

```ocaml
let rec mapfloat (f:float->float) (xs:float list) :
    float list =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(mapfloat f tl);;
```
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);;

map (fun x -> x + 1) [1; 2; 3; 4] ;;

map (fun x -> x +. 2.0) [3.1415; 2.718; 42.0] ;;

map String.uppercase ["greg"; "victor"; "joe"] ;;
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
;;
map : ('a -> 'b) -> 'a list -> 'b list
Type of the undecorated map?

```
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```

Read as: for any types 'a and 'b, if you give map a function from 'a to 'b, it will return a function which when given a list of 'a values, returns a list of 'b values.

We often use greek letters like α or β to represent type variables.
We can say this explicitly

```
let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
;;
map : ('a -> 'b) -> 'a list -> 'b list
```

The OCaml compiler is smart enough to figure out that this is the *most general* type that you can assign to the code.

We say map is *polymorphic* in the types 'a and 'b – just a fancy way to say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added after the fact and more complicated due to subtyping)
More realistic polymorphic functions

```ocaml
let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list =
  match (xs,ys) with
  | ([],_) -> ys
  | (_,[]) -> xs
  | (x::xst, y::yst) ->
    if lt x y then x::(merge lt xst ys)
    else y::(merge lt xs yst) ;;

let rec split (xs:'a list) (ys:'a list) (zs:'a list) : 'a list * 'a list =
  match xs with
  | [] -> (ys, zs)
  | x::rest -> split rest zs (x::ys) ;;

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =
  match xs with
  | [] | _::[] -> xs
  | _ -> let (first,second) = split xs [] [] in
      merge lt (mergesort lt first) (mergesort lt second) ;;
```
More realistic polymorphic functions

mergesort : ('a->'a->bool) -> 'a list -> 'a list

mergesort (<=) [3;2;7;1]
 == [1;2;3;7]

mergesort (=>) [2.718; 3.1415; 42.0]
 == [42.0 ; 3.1415; 2.718]

mergesort (fun x y -> String.compare x y < 0) ["Hi"; "Bi"]
 == ["Bi"; "Hi"]

let int_sort = mergesort (<=) ;;
let int_sort_down = mergesort (=>) ;;
let str_sort =
 mergesort (fun x y -> String.compare x y < 0) ;;
Another Interesting Function

```ml
let comp f g x = f (g x) ;;
let mystery = comp (add 1) square ;;

let comp = fun f -> (fun g -> (fun x -> f (g x))) ;;
let mystery = comp (add 1) square ;;

let mystery =
(fun f -> (fun g -> (fun x -> f (g x)))
  (add 1) square ;;

let mystery =
  fun x ->
    (add 1) (square x) ;;

let mystery x =
  add 1 (square x) ;;
```
What does this program do?

\[
\text{map } f \left(\text{map } g \left[x_1; x_2; \ldots; x_n \right] \right)
\]

For each element of the list \(x_1, x_2, x_3 \ldots x_n\), it executes \(g\), creating:

\[
\text{map } f \left(\left[g \; x_1; g \; x_2; \ldots; g \; x_n \right] \right)
\]

Then for each element of the list \([g \; x_1, g \; x_2, g \; x_3 \ldots g \; x_n]\), it executes \(f\), creating:

\[
[f \; (g \; x_1); f \; (g \; x_2); \ldots; f \; (g \; x_n)]
\]

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)

\[
\text{map } (\text{comp } f \; g) \left[x_1; x_2; \ldots; x_n \right]
\]
This kind of optimization has a name:\n\n**deforestation**

(because it eliminates intermediate lists and, um, trees...)

\[\text{map } f \ (\text{map } g \ [x_1; \ x_2; \ldots; \ xn]) \]

\[\text{map } (\text{comp } f \ g) \ [x_1; \ x_2; \ldots; \ xn] \]
What is the type of `comp`?

```ocaml
let comp f g x = f (g x) ;;
```
What is the type of `comp`?

```ocaml
let comp f g x = f (g x) ;;
```

`comp : ('b -> 'c) -> ('a -> 'b) -> ('a -> 'c)`
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of reduce?
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);

What’s the most general type of `reduce`?

Based on the patterns, we know `xs` must be a `('a list)` for some type `'a`.
let rec reduce f u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of reduce?
How about reduce?

```ocaml
let rec reduce f u (xs: 'a list) =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;
```

What’s the most general type of reduce?

f is called so it must be a function of two arguments.
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of reduce?
How about reduce?

```ocaml
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl);;
```

What’s the most general type of reduce?

Furthermore, `hd` came from `xs`, so `f` must take an `'a` value as its first argument.
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of `reduce`?

The second argument to `f` must have the same type as the result of `reduce`. Let’s call it 'b.
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of reduce?

The result of f must have the same type as the result of reduce overall: 'b.
let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of reduce?
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

What’s the most general type of reduce?

If xs is empty, then reduce returns u. So u’s type must be 'b.
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);

What’s the most general type of reduce?

('a -> 'b -> 'b) -> 'b -> 'a list -> 'b
NB: map and reduce are already defined in the List library.
 – However, reduce is called “fold_right”.
 – (Good bet there’s a “fold_left” too.)

I’ll use **reduce** instead of **fold_right**, for 3 reasons:
 – Analogy with Google’s Map/Reduce
 – The library’s arguments to fold_right are in the "wrong" order
 – Makes the example fit on a slide.
Summary

• Map and reduce are two higher-order functions that capture very, very common recursion patterns

• Reduce is especially powerful:
 – related to the “visitor pattern” of OO languages like Java.
 – can implement most list-processing functions using it, including things like copy, append, filter, reverse, map, etc.

• We can write clear, terse, reusable code by exploiting:
 – higher-order functions
 – anonymous functions
 – first-class functions
 – polymorphism
Using map, write a function that takes a list of pairs of integers, and produces a list of the sums of the pairs.

- e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
- Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces their quotient if it exists.

- e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
- Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters out all of the None’s.

- e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
- Why can’t we directly use filter? How would you generalize filter so that you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of numbers.

- e.g., sum_squares = [3,5,2] = 38