Thinking Inductively

COS 326
David Walker
Princeton University
Administration

• Assignments and getting help
 – don’t start assignments early as there may be changes!
 • but you can start Assignment 2 now if you want (due next Wed!)
 • of course, you'll get more practice on A2 materials in precept
 – sign up for Piazza!
 • https://piazza.com/princeton/fall2016/cos326/home
 – Assignment 1 due at 11:59 tonight!

• Program style guide:

• Read notes:
 – functional basics, type-checking, typed programming
 – thinking inductively (today)
 – Real World OCaml Chapter 2, 3
A SHORT JAVA RANT
public class Pair {
 public int x;
 public int y;

 public Pair (int a, int b) {
 x = a;
 y = b;
 }
}

public class User {
 public Pair swap (Pair p1) {
 Pair p2 =
 new Pair(p1.y, p1.x);
 return p2;
 }
}

What could go wrong?
A Paucity of Types

The input `p1` to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is *just a pair*.

How many students in the class have seen an accidental null pointer exception thrown in their Java code?
In O'Caml, if a pair may be null it is a pair option:

```ocaml
type java_pair = (int * int) option
```
From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

```
type java_pair = (int * int) option
```

And if you write code like this:

```
let swap_java_pair (p:java_pair) : java_pair =
  let (x,y) = p in
  (y,x)
```
From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

```ocaml
type java_pair = (int * int) option
```

And if you write code like this:

```ocaml
let swap_java_pair (p:java_pair) : java_pair =
let (x,y) = p in
(y,x)
```

You get a *helpful* error message like this:

```
# ... Characters 91-92:
  let (x,y) = p in (y,x);;
^  
Error: This expression has type java_pair = (int * int) option
    but an expression was expected of type 'a * 'b
```
type java_pair = (int * int) option

And what if you were up at 3am trying to finish your COS 326 assignment and you accidentally wrote the following sleep-deprived, brain-dead statement?

let swap_java_pair (p:java_pair) : java_pair =
match p with
| Some (x,y) -> Some (y,x)
from java pairs to ocaml pairs

type java_pair = (int * int) option

and what if you were up at 3am trying to finish your cos 326 assignment and you accidentally wrote the following sleep-deprived, brain-dead statement?

let swap_java_pair (p:java_pair) : java_pair =
match p with
 | Some (x,y) -> Some (y,x)

ocaml to the rescue!

..match p with
 | Some (x,y) -> Some (y,x)

warning 8: this pattern-matching is not exhaustive.
here is an example of a value that is not matched: none
From Java Pairs to O'Caml Pairs

```ocaml
type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
  match p with
  | Some (x,y) -> Some (y,x)
  | None -> None
```

And what if you were up at 3am trying to finish your COS 326 assignment and you accidentally wrote the following sleep-deprived, brain-dead statement?

```ocaml
let swap_java_pair (p:java_pair) : java_pair =
  match p with
  | Some (x,y) -> Some (y,x)
```

An easy fix!

```ocaml
let swap_java_pair (p:java_pair) : java_pair =
  match p with
  | None -> None
  | Some (x,y) -> Some (y,x)
```
Moreover, your pairs are probably almost never null!

Defensive programming & always checking for null is AnNOyinG
From Java Pairs to O'Caml Pairs

There just isn't always some "good thing" for a function to do when it receives a bad input, like a null pointer.

In O'Caml, all these issues disappear when you use the proper type for a pair and that type contains no "extra junk".

```ocaml
type pair = int * int

let swap (p:pair) : pair =
  let (x,y) = p in (y,x)
```

Once you know O'Caml, it is **hard** to write swap incorrectly. Your *bullet-proof* code is much simpler than in Java.
Java has a paucity of types
 – There is no type to describe just the pairs
 – There is no type to describe just the triples
 – There is no type to describe the pairs of pairs
 – There is no type ...

OCaml has many more types
 – use option when things may be null
 – do not use option when things are not null
 – OCaml types describe data structures more precisely
 • programmers have fewer cases to worry about
 • entire classes of errors just go away
 • type checking and pattern analysis help prevent programmers from ever forgetting about a case
Summary of Java Pair Rant

Java has a paucity of types
- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs
- There is no type...

OCaml has many more types
- use or when things may be null
- do not use or when things are not null
- ocaml types describe data structures more precisely
 - programmers have fewer cases to worry about
 - en, re classes of errors just go away
 - type checking and pattern analysis help prevent programmers from ever forgetting about a case

SCORE: OCAML 1, JAVA 0
Java has a paucity of types
 – but at least when you forget something,
 it *throws an exception* instead of silently going off the trolley!

If you forget to check for null pointer in a C program,
 – no type-check error at compile time
 – no exception at run time
 – it might crash right away (that would be best), or
 – it might permit a buffer-overflow (or similar) vulnerability
 – so the hackers pwn you!
Java has a paucity of types

- but at least when you forget something, it throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,

- no type-check error at compile time, no exception at run time, it might crash right away (that would be best), or
- it might permit a buffer overrun (or similar) vulnerability – so the hackers pwn you!

Summary of C, C++ rant

SCORE:
OCAML 1, JAVA 0, C -1
INDUCTIVE THINKING
The form of a function is often governed in part by its type.
The form of a function is often governed in part by its type.

\[
\text{swap} : \text{int} \times \text{int} \rightarrow \text{int} \times \text{int}
\]

\[
\text{let swap (x,y) = (y,x)}
\]

A function from pairs to pairs has little to do:
- it extracts the elements of a pair
- builds a new pair
The form of a function is often governed in part by its type.

```plaintext
swap : int * int -> int * int

let swap (x,y) = (y,x)
```

A function from pairs to pairs has little to do:
- it extracts the elements of a pair
- builds a new pair

Functions with more to do, recursive or *inductive* functions, operate over recursive or *inductive* data
An *inductive data type* T is a data type defined by:

- a collection of base cases
 - that don’t refer to T
- a collection of inductive cases that build new values of type T from pre-existing data of type T
 - the pre-existing data is guaranteed to be *smaller* than the new values

Programming principle:

- solve programming problem for base cases
- solve programming problem for inductive cases by calling function recursively (inductively) on *smaller* data value

Proving principle:

- prove program satisfies property P for base cases
- prove inductive cases satisfy property P assuming inductive calls on *smaller* data values satisfy property $P
LISTS: AN INDUCTIVE DATA TYPE
Lists are Recursive Data

- In OCaml, a list value is:
 - [] (the empty list)
 - v :: vs (a value v followed by a shorter list of values vs)

Inductive Case

Base Case
Lists are Inductive Data

• In OCaml, a list value is:
 – [] (the empty list)
 – v :: vs (a value v followed by a shorter list of values vs)

• An example:
 – 2 :: 3 :: 5 :: [] has type int list
 – is the same as: 2 :: (3 :: (5 :: []))
 – "::" is called "cons"

• An alternative syntax (“syntactic sugar” for lists):
 – [2; 3; 5]
 – But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get confused fall back on the 2 basic constructors: :: and []
Typing Lists

• Typing rules for lists:

1. \textbf{[] may have any list type} t \textbf{list}

2. \textbf{if} $e1 : t$ \textbf{and} $e2 : t$ \textbf{list}
 \textbf{then} $(e1 :: e2) : t$ \textbf{list}
Typing Lists

• Typing rules for lists:

 (1) [] may have any list type t list

 (2) if e1 : t and e2 : t list
 then (e1 :: e2) : t list

• More examples:

 (1 + 2) :: (3 + 4) :: [] : ??

 (2 :: []) :: (5 :: 6 :: []) :: [] : ??

Typing rules for lists:

(1) \([\]\) may have any list type \(t \ list\)

(2) if \(e_1 : t\) and \(e_2 : t \ list\)
then \((e_1 :: e_2) : t \ list\)

More examples:

(1 + 2) :: (3 + 4) :: [] : int list

(2 :: []) :: (5 :: 6 :: []) :: [] : int list list

[[2]; [5; 6]] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)
• What type does this have?

Another Example

- What type does this have?

```
# [2] :: [3];;
Error: This expression has type int but an expression was expected of type int list
#
```
• What type does this have?

- int list
- int list

- Give me a simple fix that makes the expression type check?

e1:T \ e2:T list
\[e1::e2 : T\ list\]
Another Example

- What type does this have?

\[
\]

- int list

- int list

- Give me a simple fix that makes the expression type check?

Either:

\[
2 :: [3] : \text{int list}
\]

Or:

\[
\]

\[
e1 : T \quad e2 : T \text{ list}
\]

\[
e1 :: e2 : T \text{ list}
\]
• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =

;;
Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```ocaml
(* return Some v, if v is the first list element;
   return None, if the list is empty *)

let head (xs : int list) : int option =
  match xs with
  | [] ->
  | hd :: _ ->
  ;;
```

we don't care about the contents of the tail of the list so we use the underscore
• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] -> None
 | hd :: _ -> Some hd
 ;;

• This function isn't recursive -- we only extracted a small, fixed amount of information from the list -- the first element
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =

;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] ->
| (x,y) :: tl ->
;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl ->
 ;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> ?? :: ??
;;

the result type is int list, so we can speculate that we should create a list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??

the first element is the product
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??
;;

to complete the job, we must compute the products for the rest of the list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: prods tl
;;
Three Parts to Constructing a Function

(1) Think about how to **break down** the input into cases:

```
let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] -> ...
  | (x, y) :: tl -> ...
```

*This assumption is called the *Induction Hypothesis*. You’ll use it to prove your program correct.*

(2) **Assume** the recursive call on smaller data is correct.

(3) Use the result of the recursive call to **build** correct answer.

```
let rec prods (xs : (int * int) list) : int list =
  ...
  | (x, y) :: tl -> ...
  prods tl ...
```
Another example: zip

(* Given two lists of integers, return None if the lists are different lengths otherwise stitch the lists together to create Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)

(Give it a try.)
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with

;;
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) ->
| ([], ys') ->
| (xs', []) ->
| (xs', ys') ->
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

;;
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> ;;
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xs', []) -> None
    | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;
```

is this ok?
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.
let rec zip (xs : int list) (ys : int list) :
 (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> (x,y) :: zs
)
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], [],) -> Some []
 | ([], y::ys') -> None
 | (x::xs', [],) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs)
);;
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) : (int * int) list option =
  match (xs, ys) with
  | ([], []) -> Some []
  | (x::xs', y::ys') ->
    (match zip xs' ys' with
     None -> None
     | Some zs -> Some ((x,y) :: zs))
  | (_, _) -> None
;;
```

Clean up.

Reorganize the cases.

Pattern matching proceeds in order.
let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl
;;
A bad list example

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl
;;

Characters 39-78:
..match xs with
 hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>
Recall Insertion Sort

• At any point during the insertion sort:
 – some initial segment of the array will be sorted
 – the rest of the array will be in the same (unsorted) order as it was originally

-5 -2 3 -4 10 6 7

sorted unsorted
Recall Insertion Sort

• At any point during the insertion sort:
 – some initial segment of the array will be sorted
 – the rest of the array will be in the same (unsorted) order as it was originally

 -5 -2 3 -4 10 6 7

 sorted unsorted

• At each step, take the next item in the array and insert it in order into the sorted portion of the list

 -5 -4 -2 3 10 6 7

 sorted unsorted
The algorithm is similar, except instead of one array, we will maintain two lists, a sorted list and an unsorted list.

We'll factor the algorithm:
- a function to insert into a sorted list
- a sorting function that repeatedly inserts
let rec insert (x : int) (xs : int list) : int list =

;;
let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] ->
 | hd :: tl ->

(* insert x in to sorted list xs *)

a familiar pattern: analyze the list by cases
let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->

insert x into the empty list
let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl ->
 if hd < x then
 hd :: insert x tl
 ;;
(*) insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
 if hd < x then
 hd :: insert x tl
 else
 x :: xs

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

;;
type il = int list

let rec insert_sort (xs : il) : il =

(* insertion sort *)

let rec aux (sorted : il) (unsorted : il) : il =

in

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =
 let rec aux (sorted : il) (unsorted : il) : il =
 in
 aux [] xs
;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] ->
 | hd :: tl ->
in
aux [] xs

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> aux (insert hd sorted) tl
 in
 aux [] xs

;;
A COUPLE MORE THOUGHTS ON LISTS
The (Single) List Programming Paradigm

• Recall that a list is either:
 – [] (the empty list)
 – v :: vs (a value v followed by a *previously constructed list vs*)

• Some examples:

```plaintext
let l0 = [];; (* length is 0 *)
let l1 = 1::l0;; (* length is 1 *)
let l2 = 2::l1;; (* length is 2 *)
let l3 = 3::l2;; (* length is 3 *)
...
```
Consider the following picture. How long is the linked structure?
Can we build a value with type `int list` to represent it?
Consider This Picture

• How long is it? **Infinitely long?**
• Can we build a value with type `int list` to represent it? **No!**
 – all values with type `int list` have finite length

```
1 2 3 4
```
The List Type

• Is it a good thing that the type list does not contain any infinitely long lists? Yes!

• A terminating list-processing scheme:

```haskell
let rec f (xs : int list) : int =
    match xs with
        [] -> ... do something not recursive ... 
    | hd::tail -> ... f tail ...
```

terminates because f only called recursively on smaller lists
A Loopy Program

```
let rec loop (xs : int list) : int =
    match xs with
    [] -> 0
    | hd::tail -> hd + loop (0::tail)
;;
```

Does this program terminate?
A Loopy Program

let rec loop (xs : int list) : int =
 match xs with
 | [] -> []
 | hd::tail -> hd + loop (0::tail)

Does this program terminate? No! Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.
ML has a **strong type system**

- ML **types say a lot** about the set of values that inhabit them

In this case, the tail of the list is **always** shorter than the whole list

This makes it easy to write functions that terminate; **it would be harder if you had to consider more cases**, such as the case that the tail of a list might loop back on itself. **Moreover OCaml hits you over the head to tell you what the only 2 cases are!**

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. **ML is better than other languages** because it gives you **control** over the values you want to program with via types!
Rant #2: Imperative lists

• One week from today, ask yourself: Which is easier:
 – Programming with immutable lists in ML?
 – Programming with pointers and mutable cells in C/Java
 – I guarantee you are going to say ML!

• there are so many more cases to worry about in C/Java
• so many things that can go wrong

SCORE: OCAML 2, JAVA 0
C: why bother?
I WANT TO BUILD A PERFECT HO-SCALE (\(\frac{1}{87}\)) MODEL TRAIN LAYOUT OF MY TOWN.

IN YOUR BASEMENT? BAD IDEA. NEVER MAKE A LAYOUT OF THE AREA YOU'RE IN.

WHY NOT?

BECAUSE IT'D INCLUDE A LITTLE 1" REPLICA OF YOUR HOUSE.

SO? THAT'D BE COOL; I'D MAKE TINY REPLICA OF MY ROOMS, MY FURNITURE—AND YOUR TRAIN LAYOUT?

THE MATRYOSHKA LIMIT: IT IS IMPOSSIBLE TO NEST MORE THAN SIX HO LAYOUTS

MY GOD.

YEAH, IT'S THE SECOND RULE OF MODEL TRAIN LAYOUTS: NO NESTING.

WHAT'S THE FIRST RULE?

"DO NOT TALK ABOUT MODEL TRAIN LAYOUTS". THAT RULE WAS ACTUALLY VOTED IN BY OUR FRIENDS AND FAMILIES. PHILISTINES.
Example problems to practice

• Write a function to sum the elements of a list
 – `sum [1; 2; 3] ==> 6`

• Write a function to append two lists
 – `append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]`

• Write a function to reverse a list
 – `rev [1;2;3] ==> [3;2;1]`

• Write a function to turn a list of pairs into a pair of lists
 – `split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])`

• Write a function that returns all prefixes of a list
 – `prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]`

• suffixes...
ANOTHER INDUCTIVE DATA TYPE: THE NATURAL NUMBERS
Natural Numbers

• Natural numbers are a lot like lists
 – both can be defined inductively

• A natural number \(n \) is either
 – 0, or
 – \(m + 1 \) where \(m \) is a smaller natural number

• Functions over naturals \(n \) must consider both cases
 – programming the base case 0 is usually easy
 – programming the inductive case \((m+1)\) will often involve recursive calls over smaller numbers

• OCaml doesn't have a built-in type "nat" so we will use "int" instead for now ...
 – “int” has too many values in it (and also not enough)
 – later in the course we could define an abstract type that contains exactly the natural numbers
(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =

;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number
 return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 ->
 | _ -> ;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
(* precondition: n is a natural number return double the input *)

let rec double_nat (n : int) : int =
match n with
| 0 -> 0
| _ -> ;;

solve easy \textit{base case} first
consider:
what number is double 0?

By definition of naturals:
• \(n = 0 \) or
• \(n = m+1 \) for some nat \(m \)
An Example

(* precondition: n is a natural number return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 -> 0
 | _ -> ????
;;

assume double_nat m is correct where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number
 return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 -> 0
 | _ -> 2 + double_nat (n-1)
;;

assume double_nat m is correct where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

I wish I had a pattern (m+1) ... but OCaml doesn’t have it. So I use n-1 to get m.
(* fail if the input is negative
 double the input if it is non-negative *)

let double (n : int) : int =

let rec double_nat (n : int) : int =
 match n with
 0 -> 0
 | n -> 2 + double_nat (n-1)

in

if n < 0 then
 failwith "negative input!"
else
 double_nat n
;;
More than one way to decompose naturals

A natural \(n \) is either:
- \(0 \),
- \(m+1 \), where \(m \) is a natural

A natural \(n \) is either:
- \(0 \),
- \(1 \),
- \(m+2 \), where \(m \) is a natural

A natural \(n \) is either:
- \(0 \),
- \(m \times 2 \)
- \(m \times 2 + 1 \)

Unary decomposition

Unary even/odd decomposition

Binary decomposition
(there’s a little problem here with a redundant representation; what is it?)
More than one way to decompose lists

A list xs is either:
- $[]$,
- $x::xs$, where ys is a list

A list xs is either:
- $[]$,
- $[x]$,
- $x::y::ys$, where ys is a list

A list xs is either:
- $[]$,
- $a@b$
- $x :: (a@b)$

where a and b are lists of the same length; recall that @ is list-concat
• Instead of while or for loops, functional programmers use recursive functions

• These functions operate by:
 – decomposing the input data
 – considering all cases
 – some cases are base cases, which do not require recursive calls
 – some cases are inductive cases, which require recursive calls on smaller arguments

• We've seen:
 – lists with cases:
 • (1) empty list, (2) a list with one or more elements
 – natural numbers with cases:
 • (1) zero (2) m+1
 – we'll see many more examples throughout the course