

Project 4: IPC and Process
Management

Project Info

● Design Reviews: Sunday, 11/9 and Monday,
11/10. Sign up!

● OHs: Thursdays, 4:30-6:30pm
● Due Date: Saturday, 11/15, at 11:59pm

General Notes

● Need to protect critical sections with synch
devices (sync.h/c). This project is an exercise in
synch mechanisms.

● Use the supplier scheduler (scheduler.c), which
uses lottery scheduling. Don't break it!
– total_ready_priority

– ready_queue

● Look at the test cases (Robin Hood esp.) to get
an idea of how everything fits together

Implementation Checklist

● do_spawn: create new processes
● do_mbox_*: handful of mbox functions to

enable IPC
● Handle keyboard input

– putchar()

– do_getchar()

● do_kill: kill a process
● do_wait: wait on a process
● This is a reasonable order in which to complete

this project!!

Spawn

● Kernel has a fixed array of PCBs
● What info do you need to initialize process?

– PID

– Allocate a stack

– Entry point (ramdisk_find)

– total_ready_priority

– Do something with the ready_queue

Message Boxes

● Read the (2) pages in Tanenbaum about
message passing

● Literally the bounded-buffer problem
● Reclaim mboxes (refcount)

Keyboard Input

● Implemented as a message box (initialized on
kernel startup)
– putchar() is a producer (puts character in message

box). If buffer is full, discard

– do_getchar() is a consumer (reads character from
message box). You should replace the dummy
implementation with your own code.

– Keyboard interrupt handler is initalized in init_idt().
Keyboard.c translates keyboard signal to an ASCII
character for you.

Kill

● A process should be killed immediately
– Which queue it is in (ready, blocked, sleeping, etc)

doesn't matter-- kill it!

● Do not reclaim locks (this is extra credit)
● Reclaim memory!!

– Occupied by the PCB

– Look at robinhood test case to figure out what
needs to be reclaimed

● Update total_ready_priority

Wait

● Waits for a process to exit
– Blocks until the process is killed or exits normally

● What to add to the PCB to implement this
behavior?

● Return -1 on failure, 0 on success

Hints/Tips

● List of functions to implement is straightforward.
But realizing the implementation is tricky!

● Can't use anything in stdio.h/string.h/standard C
libraries. Look to util.h and check out any of the
header files in the project folder for a helper
function you might want.

● Use the tasks script (./tasks
robinhoodandlittlejohn) to copy 3 files over to
the top-level project directory. Otherwise make
will fail.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

