

Project 1: Bootloader
COS 318
Fall 2014

Project 1 Schedule

● Design Review
– Tuesday, Sep 23

– 10-min time slots from 9:30am-2:20pm

● Due date: Sunday, 9/28, 11:59pm

General Suggestions

● Read assembly_example.s in start code pkg
● Get bootblock.s working before starting on
createimage.c

● Read documentation on AT&T syntax x86
Assembly language

● Read provided documentation on ELF format
● Start as early as you can, and get as much

done as possible by the design review

Project 1 Overview

● Write a bootloader: bootblock.s
– How to set up and start running the OS

– Written in x86 Assembly language (AT&T syntax)

● Implement a tool to create a bootable OS
image: createimage.c
– Bootable image contains bootloader and kernel

– How are executable files structured?

– Become familiar with ELF format

Boot Process

● When powered up, nothing in RAM, so how do
we get started?
– Resort to hardware

– Load BIOS from ROM

● BIOS:
– Minimal functionality

– Initialization of I/O devices

– Search for bootable devices

Loading the Bootloader

● Found bootable storage volume:
– HDD, USB, Floppy

– Load bootloader

● How is this done?
– Load first sector (512 bytes)

– Memory location: 0x7c00

– Switch control to this location

to launch the bootloader

The Bootloader
● 3 tasks:

– Load the kernel into memory

– Setup the kernel stack

– Switch control to the kernel

Let's Review Assembly

● About numbers, need good bookkeeping
● Move data, perform simple arithmetic
● Need a lot of steps to do useful things
● KEY:

– Understand memory addresses

– Know where things are in memory

Memory Addressing

● 1MB of memory
– Valid address range: 0x00000 - 0xFFFFF

● Real mode segmented model:
– See full 1MB with 20-bit addresses

– 16-bit segments and 16-bit offsets

● Addressing format: segment:offset
– Actual address = 16*segment + offset

– How would you write the address for the bootloader?

Registers

● 5 types of CPU registers:
– General purpose: ax, bx, cx, dx (can address high or

low-order byte via ah/al etc.)

– Segment: cs, ds, es, ss

– Pointer: ip, bp, sp

– Index: di, si

– Flags: df, zf (only 9 bits used)

● 32-bit registers have e prefix: e.g. eax

AT&T Syntax

● Prefix register names with % (e.g. %ax)
● Instruction format: instr src, dest

– e.g. movw %ax, %bx

● Prefix constants, immediate values with $
– e.g. movw $0x01, %ax

● Suffix instructions with size of data
– b for byte, w for word (16 bits), l for long (32 bits)

– Keep the size of your registers in mind!

Important Instructions

● mov x, y: moves data into a register
– e.g. movw %ax, %ds

● Jumps:
– jmp imm: %ip ← imm

● e.g. jmp $print_char

– ljmp imm1, imm2: %cs ← imm1, %ip ← imm2
● e.g. ljmp $0x7c0:0x00, $0x00

Important Instructions

● Stack ops:
– push x: %sp--, Mem[%ss:%sp] ← x

– pop x: x ← Mem[%ss:%sp], %sp++

● Function calls:
– call <label>: push %ip, jmp <label>

– ret: pop %ip

– Be careful not to override register values!

Important Instructions

● Interrupts:
– int imm: invoke a software interrupt

● int 0x10 (console output)
● int 0x13 (disk I/O)
● int 0x16 (keyboard input)

– Each interrupt offers several functions and
parameters

● Function indicated in %ah
● Params in other regs

Read from Disk to Memory
● BIOS int 0x13, function 2:

– Read disk sectors into memory

– Parameters:
● %ah = $0x02 (disk read function)
● %al = # of sectors to read
● %ch = cylinder number
● %cl = sector number
● %dh = head number
● %dl = drive number (already set)
● %es:%bx address into which we want to read the data
● Finally call the interrupt: int $0x13

– Refer to http://en.wikipedia.org/wiki/Cylinder-head-
sector for more info

Assembly Program Structure

● Assembler directives:
– Not instructions

– Segment the program

● .text begins code segment
● .globl defines a list of symbols as global
● .data begins data segment
● .equ defines a constant (like #define)

– e.g. .equ ZERO, $0x00

● .byte, .word, .asciz reserve space in memory

ELF Format

● Executable and linking format
● Created by assembler and link editor
● Object file: binary representation of programs

intended to execute directly on a processor
● Support various processors/architectures:

– Represent some control data in a machine-
independent format

ELF Object File format
● Header (p. 9/10):

– Beginning of file

– Roadmap, file organization

● Program header table (p.33):
– Array, each element describes

a segment

– Tells system how to create the
process image

– Files used to create an
executable program must have
a Phdr p. 7 in ELF manual

Warm-up Exercise

● Executable and linking format
● Created by assembler and link editor
● Object file: binary representation of programs

intended to execute directly on a processor
● Support various processors/architectures:

– Represent some control data in a machine-
independent format

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

