
COS 318: Operating Systems

Semaphores, Monitors and
Condition Variables

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Producer-consumer problem
u  Semaphores
u  Monitors
u  Barriers

Revisit Mutex

u  Mutex can solve the critical section problem
Acquire(lock);
 Critical section
Release(lock);

u  Use Mutex primitives to access shared data structures
E.g. shared “count” variable

 Acquire(lock);
 count++;
 Release(lock);

u  Are mutex primitives adequate to solve all problems?

 3

Producer-Consumer (Bounded Buffer) Problem

u  Can we solve this problem with Mutex primitives?

4

count = 4

N = 12

Producer:
 while (1) {
 produce an item

 Insert item in buffer

 count++;
}

Consumer:
 while (1) {
 remove an item from buffer

 count--;

 consume an item
 }

Use Mutex, Block and Unblock

u  Does this work?

5

count = 4

N = 12

Producer:
 while (1) {
 produce an item
 if (count == N)

 Block();
 Insert item in buffer
 Acquire(lock);
 count++;
 Release(lock);
 if (count == 1)
 Unblock(Consumer);
 }

Consumer:
 while (1) {
 if (!count)

 Block();
 remove an item from buffer
 Acquire(lock);
 count--;
 Release(lock);
 if (count == N-1)

 Unblock(Producer);
 consume an item
 }

Use Mutex, Block and Unblock

u  Race condition!
u  Ultimately, both block and never wake up
u  Lost the unblock; any way to “remember” them?

6

count = 0

Producer:
 while (1) {
 produce an item
 if (count == N)

 Block();
 Insert item in buffer
 Acquire(lock);
 count++;
 Release(lock);
 if (count == 1)
 Unblock(Consumer);
 }

Consumer:
 while (1) {
 if (!count)
{context switch}

 Block();
 remove an item from buffer
 Acquire(lock);
 count--;
 Release(lock);
 if (count == N-1)

 Unblock(Producer);
 consume an item
 }

N = 12

count = 1 count = 12

Consumer:
 while (1) {
 if (!count)
{context switch}

 Block();
 remove an item from buffer
 Acquire(lock);
 count--;
 Release(lock);
 if (count == N-1)

 Unblock(Producer);
 consume an item
 }

7

Semaphores (Dijkstra, 1965)

u  Initialization
l  Initialize to an integer value

u  Never access the value directly after that, only through P(), V()
l  The operations P() and V() are atomic operations
l  System implements the atomicity

u  If positive value, think of value as keeping track of how many
‘resources’ or “un-activated unblocks” are available

u  If negative, tracks how many threads are waiting for a resource
or unblock

8

Semaphores (Dijkstra, 1965)

u  P (or Down or Wait or “Probeer”) definition
l  Atomic operation
l  Decrement value, and if less than zero block
l  Or: Wait for semaphore to become positive and then decrement

 P(s){ P(s){
 if (--s < 0) while (s <= 0)
 block(s); ;
 s--;
 } }

u  V (or Up or Signal) definition
l  Atomic operation
l  Increment semaphore
l  Or increment semaphore, and if non-positive (which means at least one

thread is blocked waiting on the sempahore) then unblock a thread
 V(s){ V(s){

 if (++s <=0) s++;
 unblock(s); }

 }

Bounded Buffer with Semaphores

u  Initialization: emptyCount = N; fullCount = 0
u Are P(mutex)and V(mutex) necessary?

Producer:
 while (1) {
 produce an item
 P(emptyCount);

 P(mutex);
 put item in buffer
 V(mutex);

 V(fullCount);
 }

Consumer:
 while (1) {
 P(fullCount);

 P(mutex);
 take an item from buffer
 V(mutex);

 V(emptyCount);
 consume item
 }

Uses of Semaphores in this Example

u  Event sequencing
l  Don’t consume if buffer empty, wait for something to be

added
l  Don’t add if buffer full, wait for something to be removed

u  Mutual exclusion
l  Avoid race conditions on shared variables

10

11

Interrupted Thread

…

Interrupt
…

Example: Interrupt Handler

Interrupt handler
...

V(s);
...

Device thread
while (1) {
 P(s);
 Acquire(m);
 ...
 deal with interrupt
 ...
 Release(m);
}

Init(s,0);

Bounded Buffer with Semaphores (again)

producer() {
 while (1) {
 produce an item
 P(emptyCount);

 P(mutex);
 put the item in buffer
 V(mutex);

 V(fullCount);
 }
}

consumer() {
 while (1) {
 P(fullCount);

 P(mutex);
 take an item from buffer
 V(mutex);

 V(emptyCount);
 consume the item
 }
}

Does Order Matter?

producer() {
 while (1) {
 produce an item
 P(mutex);
 P(emptyCount);

 put the item in buffer
 V(mutex);

 V(fullCount);
 }
}

consumer() {
 while (1) {
 P(fullCount);

 P(mutex);
 take an item from buffer
 V(mutex);

 V(emptyCount);
 consume the item
 }
}

Monitor: Hide Mutual Exclusion

u Brinch-Hansen (73), Hoare (74)
u Procedures are mutually exclusive

Shared
data

...

Queue of waiting processes
trying to enter the monitor

procedures

Condition Variables in A Monitor

u Wait(condition)
l  Block on “condition”

u Signal(condition)
l  Wakeup a blocked process

on “condition”
Shared

data

...
Entry queue

procedures

x
y

Queues
associated
with x, y
conditions

Producer-Consumer with Monitors

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

procedure Producer
begin
 while true do
 begin
 produce an item
 ProdCons.Enter();
 end;
end;

procedure Consumer
begin
 while true do
 begin
 ProdCons.Remove();
 consume an item;
 end;
end;

Hoare’s Signal Implementation (MOS p137)

u  Run the signaled thread
immediately and suspend
the current one (Hoare)

u  What if the current thread
has more things to do?

 if (only one item)

 signal(empty);
 something else

end;

17

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

Hansen’s Signal Implementation (MOS p 137)

u  Signal must be the last
statement of a monitor
procedure

u  Exit the monitor

u  Any issue with this
approach?

18

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

Mesa Signal Implementation

u  Continues its execution
 if (only one item)

 signal(empty);
 something else
end;

l  B. W. Lampson and D. D. Redell, “Experience with Processes and

Monitors in Mesa,” Communiction of the ACM, 23(2):105-117. 1980.

u  This is easy to implement!

u  Issues?

19

Evolution of Monitors
u  Brinch-Hansen (73) and Hoare Monitor (74)

l  Concept, but no implementation
l  Requires Signal to be the last statement (Hansen)
l  Requires relinquishing CPU to signaler (Hoare)

u  Mesa Language (77)
l  Monitor in language, but signaler keeps mutex and CPU
l  Waiter simply put on ready queue, with no special priority

u  Modula-2+ (84) and Modula-3 (88)
l  Explicit LOCK primitive
l  Mesa-style monitor

u  Pthreads (95)
l  Started standard effort around 1989
l  Defined by ANSI/IEEE POSIX 1003.1 Runtime library

u  Java threads
l  James Gosling in early 1990s without threads
l  Use most of the Pthreads primitives

28

Barrier Synchronization

u  Thread A and Thread B
want to meet at a
particular point

u  The one toget there first
waits for the other one to
reach that point before
proceeding

u  Then both go forward

Thread A Thread B

29

Using Semaphores as A Barrier

u  Use two semaphores?
 init(s1, 0);
init(s2, 0);

u  What about more than two threads?

Thread A
…

V(s1);
P(s2);
…

Thread B
…

V(s2);
P(s1);
…

30

Barrier Primitive

u  Functions
l  Take a barrier variable
l  Broadcast to n-1 threads
l  When barrier variable has

reached n, go forward

u  Hardware support on
some parallel machines
l  Multicast network
l  Counting logic
l  User-level barrier variables

Thread 1
…

Barrier(b);
…

Thread n
…

Barrier(b);
…

. . .

Barrier
variable

31

Equivalence

u Semaphores
l  Good for signaling and fine for simple mutex
l  Not good for mutex in general, since easy to introduce a bug

u Monitors
l  Good for scheduling and mutex
l  Maybe costly for simple signaling

32

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Barriers

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

33

Summary

u  Mutex alone are not enough
u  Semaphores
u  Monitors
u  Mesa-style monitor and its idiom
u  Barriers

