
COS 318: Operating Systems

Mutex Implementation

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Revisit Mutual Exclusion (Mutex)

u  Critical section

u  Requirements
l  Only one process/thread inside a critical section
l  No assumption about CPU speeds
l  A process/thread inside a critical section should not be blocked by any

processes/threads outside the critical section
l  No one waits forever

l  Works for multiprocessors
l  Same code for all processes/threads

Acquire(lock);
if (noCookies)
 buy cookies;
Release(lock);

Critical section

Simple Lock Variables

3

Acquire(lock) {
while (lock.value == 1)
 ;
lock.value = 1;
}

Release(lock) {
 lock.value = 0;
}

lock.value = 1;
}

Thread 1:
Acquire(lock) {
while (lock.value == 1)
 ;
{context switch)

Thread 2:

Acquire(lock) {
while (lock.value == 1)
 ;
{context switch)
 lock.value = 1;

}
{context switch)

Prevent Context Switches

u  On a uniprocessor, operations are atomic as long as a
context switch doesn’t occur

u  Context switches are caused either by actions the
thread takes (e.g. traps etc) or by external interrupts

u  The former can be controlled

u  Disable interrupts during certain portions of code?
l  Delay the handling of external events

4

8

Why Enable or Disable Interrupts
u  Interrupts are important

l  Process I/O requests (e.g. keyboard)
l  Implement preemptive CPU scheduling

u Disabling interrupts can be helpful

l  Introduce uninterruptible code regions
l  Think sequentially most of the time
l  Delay handling of external events

DisableInt()
.
.
.

EnableInt()

Uninterruptible
region

9

Disabling Interrupts for Critical Section?

Issues:
l  Kernel cannot let users disable interrupts
l  Critical sections can be arbitrarily long
l  Works on uniprocessors, but does not work on

multiprocessors

Acquire(): disable interrupts
Release(): enable interrupts

Acquire()

 critical section?

Release()

10

“Disable Interrupts” to Implement Mutex

u  Issues:
l  May disable interrupts forever
l  Not designed for user code to use

Acquire(lock) {
 disable interrupts;
 while (lock.value != 0)

 ;
 lock.value = 1;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = 0;
 enable interrupts;
}

11

Fix “Disable Forever” problem?

Disable interrupts only when accessing lock.value variable
Issues:

l  Consume CPU cycles
l  Won’t work with multiprocessors (like all attempts above)

Acquire(lock) {
 disable interrupts;
 while (lock.value != 0){
 enable interrupts;
 disable interrupts;
 }
 lock.value = 1;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = 0;
 enable interrupts;
}

12

Another Implementation

Avoid busy-waiting

Issues

l  Working for multiprocessors

Acquire(lock) {
 disable interrupts;
 if (lock.value != 0)
 {
 Enqueue me for lock;
 Yield();
 }
 lock.value = 1;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 if (anyone in queue) {
 Dequeue a thread;
 make it ready;
 }
 lock.value = 0;
 enable interrupts;
}

13

Peterson’s Algorithm

u  See textbook

u  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM
Trans. on Computer Systems, 5(1):1-11, Feb 1987.
l  5 writes and 2 reads

int turn;
int interested[N];

void enter_region(int process)
{
 int other;

 other = 1 – process;
 interested[process] = TRUE;
 turn = process;
 while(turn == process && interested[other] == TRUE);
}

Atomic Operations

u  A thread executing an atomic instruction can’t be
preempted or interrupted while it’s doing it

u  Atomic operations on same memory value are serialized
l  Even on multiprocessors!
l  Result is consistent with some sequential ordering of operations
l  Without atomic ops, simultaneous writes by different threads

may produce a garbage value, or read that happens
simultaneously with a write may read garbage value

u  Don’t usually require special privileges, can be user level

14

15

Atomic Read-Modify-Write Instructions

u  LOCK prefix in x86
l  Make a specific set instructions atomic
l  Together with BTS to implement Test&Set

u  Exchange (xchg, x86 architecture)
l  Swap register and memory
l  Atomic (even without LOCK)

u  Fetch&Add or Fetch&Op
l  Atomic instructions for large shared memory multiprocessor

systems
u  Load linked and store conditional (LL-SC)

l  Two separate instructions (LL, SC) that are used together
l  Read value in one instruction (load linked)
 Do some operations;
l  When time to store, check if value has been modified. If not,

ok; otherwise, jump back to start

16

A Simple Solution with Test&Set

u  Define TAS(lock)
l  If successfully set (wasn’t already set when tested but this

operation set it), return 1;
l  Otherwise, return 0;

u  Any issues with the following solution?
Acquire(lock) {
 while (!TAS(lock.value))
 ;
}

Release(lock.value) {
 lock.value = 0;
}

17

Mutex with Less Waiting?

u Separate access to lock variable from value of it

Acquire(lock) {
 while (!TAS(lock.guard))
 ;
 if (lock.value) {
 enqueue the thread;
 block and lock.guard = 0;
 } else {
 lock.value = 1;
 lock.guard = 0;
 }
}

Release(lock) {
 while (!TAS(lock.guard))
 ;
 if (anyone in queue) {
 dequeue a thread;
 make it ready;
 } else
 lock.value = 0;
 lock.guard = 0;
}

18

Example: Protect a Shared Variable

u  Acquire(mutex) system call
l  Pushing parameter, sys call # onto stack
l  Generating trap/interrupt to enter kernel
l  Jump to appropriate function in kernel
l  Verify process passed in valid pointer to mutex
l  Minimal spinning
l  Block and unblock process if needed
l  Get the lock

u  Execute “count++;”
u  Release(mutex) system call

Acquire(lock); /* system call */
count++;
Release(lock) /* system call */

19

Available Primitives and Operations

u Test-and-set
l  Works at either user or kernel level

u System calls for block/unblock
l  Block takes some token and goes to sleep
l  Unblock “wakes up” a waiter on token

20

Block and Unblock System Calls

Block(lock)
l  Spin on lock.guard
l  Save the context to TCB
l  Enqueue TCB to lock.q
l  Clear lock.guard
l  Call scheduler

Unblock(lock)
l  Spin on lock.guard
l  Dequeue a TCB from lock.q
l  Put TCB in ready queue
l  Clear lock.guard

Always Block

u  Good
l  Acquire won’t make a system call if TAS succeeds

u  Bad
l  TAS instruction locks the memory bus
l  Block/Unblock still has substantial overhead

Acquire(lock) {
 while (!TAS(lock.value))
 Block(lock);
}

Release(lock) {
 lock.value = 0;
 Unblock(lock);
}

22

Always Spin

u  Two spinning loops in Acquire()?

Acquire(lock) {
 while (!TAS(lock.value))
 while (lock.value)
 ;
}

Release(lock) {
 lock.value = 0;
}

CPU CPU

L1 $ L1 $

L2 $

Multicore

CPU

L1 $

L2 $

CPU

L1 $

L2 $

… …

Memory

SMP

TAS
TAS

23

Optimal Algorithms

u  What is the optimal solution to spin vs. block?
l  Know the future
l  Exactly when to spin and when to block

u  But, we don’t know the future
l  There is no online optimal algorithm

u  Offline optimal algorithm
l  Afterwards, derive exactly when to block or spin (“what if”)
l  Useful to compare against online algorithms

24

Competitive Algorithms

u  An algorithm is c-competitive if
for every input sequence σ

 CA(σ) ≤ c × Copt(σ) + k

l  c is a constant
l  CA(σ) is the cost incurred by algorithm A in processing σ
l  Copt(σ) is the cost incurred by the optimal algorithm in

processing σ

u  What we want is to have c as small as possible
l  Deterministic
l  Randomized

Constant Competitive Algorithms

u  Spin up to N times if the lock is held by another thread
u  If the lock is still held after spinning N times, block

u  If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Acquire(lock, N) {
 int i;

 while (!TAS(lock.value)) {
 i = N;
 while (!lock.value && i)
 i--;

 if (!i)
 Block(lock);
 }
}

26

Approximate Optimal Online Algorithms

u  Main idea
l  Use past to predict future

u  Approach
l  Random walk

•  Decrement N by a unit if the last Acquire() blocked
•  Increment N by a unit if the last Acquire() didn’t block

l  Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

u  Theoretical results
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))

The competitive factor is about 1.58.

28

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

29

Summary

u  Disabling interrupts for mutex
l  There are many issues
l  When making it work, it works for only uniprocessors

u  Atomic instruction support for mutex
l  Atomic load and stores are not good enough
l  Test&set and other instructions are the way to go

u  Competitive spinning
l  Spin at the user level most of the time
l  Make no system calls in the absence of contention
l  Have more threads than processors

