COS 318: Operating Systems

OS Structures and System Calls

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Outline

Protection mechanisms
e Lead to ...

OS structures
System and library calls

Protection Issues

CPU

e Kernel has the ability to take CPU away from users to
prevent a user from using the CPU forever

e Users should not have such an ability

Memory

e Prevent a user from accessing others’ data

e Prevent users from modifying kernel code and data
structures

/O
e Prevent users from performing “illegal” 1/Os

Question
e What’ s the difference between protection and security?

3

Architecture Support: Privileged Mode

An interrupt or exception (INT)

User mode A Kernel (privileged) mode
* Regular instructions » Regular instructions
* Access user memory * Privileged instructions
« Access user memory
» Access kernel memory
= ‘_ NS /

A special instruction (IRET)

Privileged Instruction Examples

Memory address mapping

Flush or invalidate data cache

Invalidate TLB entries

Load and read system registers

Change processor modes from kernel to user
Change the voltage and frequency of processor
Halt a processor

Reset a processor

Perform I/O operations

Monolithic

All kernel routines are together,
linked in single large executable

e [Each can call any other
e Services and utilities User User
A system call interface program program
Examples: o
e Linux, BSD Unix, Windows, ... N 7\
S S
4)
Pros
I ¥ ——
e Shared kernel space
e (Good performance Kernel
Cons (many things)
e Instability: crash in any procedure

brings system down
e Inflexible / hard to maintain, extend

Layered Structure

¢

Hiding information at each layer
Layered dependency

Examples

e THE (6 layers)
Mostly for functionality splitting

e MS-DOS (4 layers)
Pros
e Layered abstraction

Cons
e Inefficiency
e Inflexible

Level N

Level 2

Level 1

Hardware

x86 Protection Rings

Privileged instructions
Can be executed only
When current privileged
Level (CPR)1s 0

Operating syste

kernel >
Level 0
Operating syste
- Level 1
services
o Level 2
Applications >

Level 3

Microkernel

Services implemented as regular
processes

Micro-kernel obtain services for
users by messaging with services User OS

Examples: program Services
e Mach, Taos, L4, OS-X

Pros? *‘}%
o Flexibility K4
I L

e Fault isolation
Cons?

e Inefficient (boundary crossings) u-kernel
e |nsufficient protection

e Inconvenient to share data
between kernel and services

e Just shifts the problem?

Virtual Machine

¢ Virtual machine monitor

e Virtualize hardware
Apps Apps
e Run several OSes
e Examples 0s, . 0S,
 IBM VM/370 VM, VM,

- Java VM
- VMWare, Xen Virtual Machine Monitor

¢ What would you use _
virtual machine for? Raw Hardware

10

Two Popular Ways to Implement VMM
o060

Linux

Hardware Hardware

VMM runs on hardware VMM as an application

(A special lecture later in the semester)

11

System Call Mechanism

Assumptions
e User code can be arbitrary

e User code cannot modify kernel
memory

Design Issues

e User makes a system call with
parameters

e [he call mechanism switches
code to kernel mode

e Execute system call
e Return with results

User User
program program

&

L \!

8 7
) 9*60
I
Kernel 1n

protected memory

12

Exceptions

Sources

e Hardware (by external devices)

e Software: INT n

Exceptions

e Normal: faults, traps, aborts, and interrupts
e Special software generated: INT 3

e Machine-check exceptions

See Intel document volume 3 for details

13

Interrupt and Exceptions (1)

Vector # Mnemonic Description Type
0 #DE Divide error (by zero) Fault
1 #DB Debug Fault/trap
2 NMI interrupt Interrupt
3 #BP Breakpoint Trap
4 #OF Overflow Trap
5 #BR BOUND range exceeded Trap
6 #UD Invalid opcode Fault
7 #NM Device not available Fault
8 #DF Double fault Abort
9 Coprocessor segment overrun Fault
10 #TS Invalid TSS

14

:

e
ok

=

Interrupt and Exceptions (2)

Vector # Mnemonic Description Type
1 #NP Segment not present Fault
12 #SS Stack-segment fault Fault
13 #GP General protection Fault
14 #PF Page fault Fault
15 Reserved Fault
16 #MF Floating-point error (math fault) Fault
17 #AC Alignment check Fault
18 #MC Machine check Abort
19-31 Reserved
32-255 User defined Interrupt

15

System Calls

Operating system API

e Interface between an application and the operating
system kernel

Categories

e Process management
e Memory management
e File management

e Device management
e Communication

16

How many system calls?

6th Edition Unix: ~45

POSIX: ~130

FreeBSD: ~130

Linux: ~250 ("fewer than most")

Windows 7: ?

17

Ek &

From http://minnie.tuhs.org/UnixTree/V6

Q00
Vo6/usr/sys/ken/sysent.c

3, &smount, /* 21 = mount */
Find atmost|5 ~| related files. Search I ;' &s“mm.lzt' :’;: gg = “mc'm?z ::’;
™ including files from this version of Unix. D: 2;::3;1: J* 24 = :Zziid ny
0, &stimne, /* 25 = stime */
3, &ptrace, /* 26 = ptrace */
ﬁ* 0, &nosys, f* 27 = x *f
” 1, sfstat, /* 28 = fstat */
0, &nosys, f* 29 = x *f
T 1, &nullsys, /* 30 = swmdate; inoperative */
))) 1, &stty, /* 31 = stty */

* This table is the switch used to transfer 1, sgtty, J* 32 = gty */

* to the appropriate routine for processing a system call. 0, snosys, /t 33 = x +/

* Each row contains the nuwber of arguments expected 0¥ ghidea: /* 34 = nice */

* and a pointer to the routine. 0, ssslep, /* 35 = sleep */
.*/ 0, &sync, /* 36 = sync */
nt sysent[] 1, skill, /* 37 = kill *+/

{ 2 i 0, &getswit, /* 38 = switch */

0, &nullsys, /* 0 = indir */ 0, &nosys, /% 30 = x +/
0, &rexit, /* 1 = exit */ 0y enosys; J+ a0 = x */
0, &fork, /* 2 = fork */ 0% sdup; /% 41 = dup */
2, &read, /* 3 = read */ 0F sfidpe /* 42 = pipe */
2, swrite, /* 4 = write */ 1' &time; % B3 fimes +f
2,::60pen, /* 3 = open */ 4' &profii /* 44 = prof */
0, sclose, /* 6 = close */ 0: &nosys,’ /% 45 = tiu */
0, &swait, J* 7 = wait */ 0, ssetgid, /* 46 = setgid */
dpEereaty /* '8 = creat */ 0, &getgid, /* 47 = getgid */
2, &link, /* 9 = link */ 5 o3 T dfem San 4
. . ’ = 519
1, sunlink, /* 10 = unlink */
2, &exec, /* 11 = exec */
1, schdir, /* 12 = chdir */
0, sgtime, /* 13 = time */
3, &mwknod, /* 14 = wknod */
2, &chmod, /* 15 = chwod */
2, &chown, /* 16 = chown */
1, &shreak, /* 17 = hreak */
2, &stat, /* 18 = stat */ 18
2, &seek, /* 19 = seek */
0, sgetpid, /* 20 = getpid */

OS Kernel: Trap Handler

|
Interrupt
. Syscall table SCIVICE
HW Device \ routines
Interrupt |
System |
System Call » Service I
dispatcher | | System
HW || services
exceptions |
: System B : |
SW exceptions service ?ccept1on
Virtual. address dispatcher dispatcher 1 Exception
exceptions | | handlers
VM
/ manager s
pager

HW implementation of the boundary

19

Passing Parameters

Pass by registers

e # of registers

e # of usable registers

e # of parameters in system call
e Spill/fill code in compiler
Pass by a memory vector (list)

e Single register for starting address
e Vector in user’ s memory

Pass by stack
e Similar to the memory vector
e Procedure call convention

20

Library Stubs for System Calls

Example:
int read(int fd, char * buf, int size) User
{ program
move fd, buf, size to R;, R,, R;

move READ to R,
int $0x80 (Linux: 80}

move resu re ~ NT: 2E

Kernel 1n
protected memory

21

System Call Entry Point

EntryPoint:

switch to kernel stack User

save context User | | memory
stack

check R, ——

call the real code pointed by R, .

place result in R ¢

restore context Registers

switch to user stack Kernel

iret (change to user mode and return) stack Kernel

memory
(Assume passing parameters in registers)

22

Design Issues

®
System calls

e There is one result register; what about more results?
e How do we pass errors back to the caller?
e (Can user code lie?

System calls vs. library calls
e \What should be system calls?
e \What should be library calls?

24

Backwards compatibility...

-
The Open Group Base Specifications Issue 6 . ‘
IEEE Std 1003.1, 2004 Edition
Copyright © 2001-2004 The IEEE and The Open Group, All Rights reserved.

NAME
open - open a file
SYNOPSIS

[OH] B #include <sys/stat.h> &

$include <fcntl.h>

int open{const char *path, int oflag, ...):

The use of open() to create a regular file is preferable to the use of creat{),
because the latter is redundant and included only for historical reasons.

26

Division of Labor (or Separation Of Concerns)

Memory management example

Kernel

e Allocates “pages” with hardware protection

e Allocates a big chunk (many pages) to library

e Does not care about small allocs

Library

e Provides malloc/free for allocation and deallocation

e Application use these calls to manage memory at fine
granularity

e \When reaching the end, library asks the kernel for
more

27

Summary

Protection mechanism

e Architecture support: two modes

e Software traps (exceptions)

OS structures

e Monolithic, layered, microkernel and virtual machine
System calls

e Implementation

e Design issues

e Tradeoffs with library calls

29

