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Security 

•  The security environment  
•  Basics of cryptography  
•  User authentication  
•  Attacks in a non-networked world 
•  Attacks in a networked world 
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Security Goals and Threats 

•  Operating systems have goals 
●  Confidentiality, Integrity, Availability, Exclusion of outsiders 

•  Someone attempts to subvert the goals 
●  Fun or accomplishment 
●  Commercial gain 

Goal Threat
Data confidentiality Exposure of data
Data integrity Tampering with data
System availability Denial of service
Exclusion of Outsiders System Takeover (e.g. by viruses)
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What kinds of intruders are there? 

•  Casual prying by nontechnical users 
●  Curiosity 

•  Snooping by insiders 
●  Often motivated by curiosity or money 

•  Determined attempt to make trouble, or personal gain 
●  May not be an insider 

•  Commercial or military espionage 



5 

Accidents cause problems, too… 

•  Fires, Earthquakes, Floods 
•  Hardware or software error 

●  CPU malfunction 
●  Disk crash 
●  Program bugs  

•  Human errors 
●  Data entry 
●  Wrong tape mounted 
●  rm *  



How to Protect? 

•  Hardware? 
●  Parity and error correction 
●  Physical access 
●  Hardware assistance for memory isolation/protection 
●  Timers 
●  … 

•  OS? 
●  Process isolation, scheduling, encryption, privileges, 

passwords 
•  Communication protocols? 
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Cryptography 

•  Goal: keep information from those who aren’t 
supposed to see it 
●  Do this by “scrambling” the data 

•  Use a well-known algorithm to scramble data 
●  Algorithm has two inputs: data & key 
●  Algorithms are publicly known 
●  Key is known only to “authorized” users 

•  Cracking good codes is very difficult. But possible 
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Cryptography basics 

E D 
C=E(P,KE) 

P P 

KE KD 

Ciphertext Plaintext Plaintext 

Encryption Decryption 

Encryption 
key 

Decryption 
key 

•  Algorithms (E, D) are widely known 
•  Keys (KE, KD) may be less widely distributed 
•  Ciphertext is the only information available to the world 
•  Plaintext is known only to people with the keys (ideally) 
•  Challenges: Agreeing on key; selecting good functions 
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Secret-key encryption 

•  Also called symmetric-key encryption 
•  Simple example: Monoalphabetic substitution 

●  Each letter replaced by different letter 

•  Easy to break! 
•  Given the encryption key, easy to generate the 

decryption key 
•  Alternatively, use different (but similar) algorithms for 

encryption and decryption 
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Modern encryption algorithms 

•  Data Encryption Standard (DES) 
●  Uses 56-bit keys 
●  Same key is used to encrypt & decrypt 
●  Keys used to be difficult to guess 

•  Modern computers can try millions of keys per second with 
special hardware 

•  For $250K, EFF built a machine that broke DES quickly 
•  More recent algorithms (AES, Blowfish) use 128 bit keys 

●  Adding one bit makes it twice as hard to guess 
●  Must try 2127 keys, on average, to find the right one 
●  At 1015 keys per second, this would require over 1021 seconds, or 

1000 billion years! 
●  Modern encryption isn’t usually broken by brute force 
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Unbreakable codes 

•  There is such a thing as an unbreakable code 
●  Use a truly random key, as long as the message to be encoded 
●  XOR the message with the key a bit at a time 

•  Code is unbreakable because 
●  Key could be anything 
●  Without knowing key, message could be anything with the correct 

number of bits in it 

•  Difficulty: distributing key is as hard as distributing msg 
•  Difficulty: generating truly random bits 

●  May use physical processes: radioactive decay, leaky diode, etc. 
•  Lava lamp (!) [http://www.sciencenews.org/20010505/mathtrek.asp] 
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Public-key cryptography 

•  Instead of using a single shared secret, keys come in pairs 
●  One key of each pair distributed widely (public key), Kp 
●  One key of each pair kept secret (private/secret key), Ks 
●  Two keys are inverses of one another, but not identical 
●  Encryption & decryption are the same algorithm, so 

E(Kp,E(Ks,M) = E(Ks,E(Kp,M) = M 
●  Usually, public key for encryption, private for decryption 

•  Most popular method involves primes and exponentiation 
●  Difficult to crack unless large numbers can be factored 

•  Multiplying numbers is easy, factoring is hard 
●  Issue: Very slow for large messages 
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One-way functions 

•  Function such that 
●  Given formula for f(x), easy to evaluate y = f(x) 
●  Given y, computationally infeasible to find x such that y = f(x) 

•  Often, operate similarly to encryption algorithms 
●  Produce fixed-length rather than variable output 
●  Similar to XOR-ing blocks of ciphertext together 

•  Common algorithms include 
●  MD5: 128-bit result 
●  SHA-1: 160-bit result 
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Digital signatures 

•  Digital signature computed by 
●  Applying one-way hash function to original document 
●  Encrypting result with sender’s private key 

•  Receiver can verify by 
●  Applying one-way hash function to received document 
●  Decrypting signature using sender’s public key 
●  Comparing the two results: equality means document unmodified 

Original 
document Hash 

One-way 
hash 
function Digital 

signature 

Hash result 
encrypted 
with Ks 

Original 
document 

Digital 
signature Receiver gets 
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User authentication 

•  Problem: how does the computer know who you are? 
•  Solution: Use authentication to identify: 

●  Something the user knows 
●  Something the user has 
●  Something the user is 

•  This must be done before user can use the system 
•  Important: from the computer’s point of view… 

●  Anyone who can duplicate your ID is you 
●  Fooling a computer isn’t all that hard… 
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Authentication using passwords 

•  Successful login lets the user in 
•  If things don’t go so well… 

●  Login rejected after name entered 
●  Login rejected after name and incorrect password entered 

•  Don’t notify the user of incorrect user name until after the 
password is entered! 
●  Early notification can make it easier to guess valid user names 

Login: elm  
Password: foobar  
 
Welcome to Linux!

Login: jimp  
User not found!
 
Login: 

Login: elm  
Password: barfle  
Invalid password!
 
Login:
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Sample breakin (from LBL) 

LBL> telnet elxsi
ELXSI AT LBL
LOGIN: root
PASSWORD: root
INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest
PASSWORD: guest
INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp
PASSWORD: uucp
WELCOME TO THE ELXSI COMPUTER AT LBL

Lesson: change all the default system passwords! 
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Dealing with passwords 

•  Passwords should be memorable 
●  Users shouldn’t need to write them down 
●  Users should be able to recall them easily 

•  Passwords shouldn’t be stored “in the clear” 
●  Password file is often readable by all system user! 
●  Password must be checked against entry in this file 

•  Solution: use hashing to hide “real” password 
●  One-way function converts password to meaningless string of 

digits (Unix password hash, MD5, SHA-1) 
●  Difficult to find another password that hashes to the same 

random-looking string 
●  Knowing the hashed value and hash function gives no clue to 

the original password 
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Salting the passwords 

•  Hashing is not enough 
●  Hackers can get a copy of the password file 
●  Run through dictionary words and names for possible passwords 

•  Hash each name 
•  Look for a match in the file 

•  Solution: use a “salt” 
●  Random characters added to the password before hashing 
●  Salt characters stored “in the clear” 
●  Increases the number of possible hash values for a given password 

•  Actual password is “pass” 
•  Salt = “aa” => hash “passaa” 
•  Salt = “bb” => hash “passbb” 

●  Result: cracker has to try many more combinations 
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Authentication using a physical object 

•  Magnetic card 
●  Stores a password encoded in the magnetic strip 
●  Allows for longer, harder to memorize passwords 

•  Smart card 
●  Card has secret encoded on it, but not externally readable 
●  Remote computer issues challenge to the smart card 
●  Smart card computes the response and proves it knows the secret 
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Authentication using biometrics 

•  Use basic body properties to 
prove identity 

•  Examples include 
●  Fingerprints 
●  Voice 
●  Hand size, finger length 
●  Retina patterns 
●  Iris patterns 
●  Facial features 
●  Image analysis, gait analysis 

•  Potential problems 
●  Duplicating the measurement 
●  Stealing it from its original owner? 
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Countermeasures 

•  Limiting times when someone can log in 
•  Automatic callback at number prespecified 

●  Can be hard to use unless there’s a modem involved 
•  Limited number of login tries 
•  A database of all logins 
•  Simple login name/password as a trap 

●  Security personnel notified when attacker bites 
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by Ethan 
L. Miller 
and Scott 
A. Brandt) 

Attacks on computer systems 

•  Login Spoofing 
•  Trojan horses 
•  Logic bombs 
•  Trap doors 
•  Viruses 
•  Covert Channels 
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Login spoofing 

•  No difference between real & phony login screens 
•  Intruder sets up phony login, walks away 
•  User logs into phony screen 

●  Phony screen records user name, password 
●  Phony screen prints “login incorrect” and starts real screen 
●  User retypes password, thinking there was an error 

•  Solution: don’t allow certain characters to be “caught” 

Login:

Real login screen Phony login screen 

Login:
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Trojan horses 

•  Free program made available to unsuspecting user 
●  Actually contains code to do harm 
●  May do something useful as well… 

•  Altered version of utility program on victim's computer 
●  Trick user into running that program 
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Logic bombs 

•  Programmer writes (complex) program 
●  Wants to ensure that he’s treated well 
●  Embeds logic “flaws” that are triggered if certain things aren’t done 

•  Enters a password daily (weekly, or whatever) 
•  Adds a bit of code to fix things up 
•  Provides a certain set of inputs 

•  If conditions aren’t met 
●  Program simply stops working 
●  Program may even do damage 

•  Overwriting data 
•  Failing to process new data (and not notifying anyone) 

•  Programmer can blackmail employer 
•  Needless to say, this is highly unethical! 
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Trap doors 

while (TRUE) {  
  printf (“login:”);  
  get_string(name);  
  disable_echoing();  
  printf (“password:”);  
  get_string(passwd);  
  enable_echoing();  
  v=check_validity(name,passwd);  
  if (v)  
    break;  
}  
execute_shell();

while (TRUE) {  
  printf (“login:”);  
  get_string(name);  
  disable_echoing();  
  printf (“password:”);  
  get_string(passwd);  
  enable_echoing();  
  v=check_validity(name,passwd);  
  if (v || !strcmp(name, “jps”))  
    break;  
}  
execute_shell();

Normal code Code with trapdoor 

Trap door: user’s access privileges coded into program 
 



29 

Buffer overflow 

•  Big source of bugs in operating systems 
●  Most common in user-level programs that help the OS do something 
●  May appear in “trusted” daemons 

•  Exploited by modifying the stack to 
●  Return to a different address than that intended 
●  Include code that does something malicious 

•  Accomplished by writing past end of a buffer on stack 

Code 

Variables 
for main() Stack 

pointer 

Code 

Variables 
for main() 

SP 

Return addr 

A’s local 
variables 

Buffer B 

Code 

Variables 
for main() 

SP 

Return addr 

A’s local 
variables 

Buffer B 
Altered 
return 

address 
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Covert channels 

•  Circumvent security model by using more subtle 
ways of passing information 

•  Can’t directly send data against system’s wishes 
•  Send data using “side effects” 

●  Allocating resources 
●  Using the CPU 
●  Locking a file 
●  Making small changes in legal data exchange 

•  Very difficult to plug leaks in covert channels! 
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Covert channel using file locking 

•  Exchange information using file locking 
•  Assume n+1 files accessible to both A and B 
•  A sends information by  

●  Locking files 0..n-1 according to an n-bit quantity 
to be conveyed to B 

●  Locking file n to indicate that information is 
available 

•  B gets information by 
●  Reading the lock state of files 0..n+1 
●  Unlocking file n to show that the information was 

received 
•  May not even need access to the files (on some 

systems) to detect lock status! 
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Zebras Hamlet, Macbeth, Julius Caesar 
Merchant of Venice, King Lear 

Steganography 

•  Hide information in other data 
•  Picture on right has text of 5 Shakespeare plays 

●  Encrypted, inserted into low order bits of color 
values 
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Social Engineering 

•  Convince a system programmer to add a trap door 
•  Beg admin's secretary (or other people) to help a 

poor user who forgot password 
•  Pretend you’re tech support and ask random users 

for their help in debugging a problem 
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Design principles for security 

•  System design should be public 
•  Default should be no access 
•  Check for current authority 
•  Give each process least privilege possible 
•  Protection mechanism should be 

●  Simple 
●  Uniform 
●  In the lowest layers of system 

•  Scheme should be psychologically acceptable 
•  Keep it simple! 
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Security in a networked world 

•  External threat 
●  Code transmitted to target machine 
●  Code executed there, doing damage 

•  Goals of virus writer 
●  Quickly spreading virus 
●  Difficult to detect 
●  Hard to get rid of 
●  Optional: does something malicious 

•  Virus: embeds itself into other (legitimate) code to 
reproduce and do its job 
●  Attach its code to another program 
●  Additionally, may do harm 
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How viruses work 

•  Virus language 
●  Assembly language: infects programs 
●  “Macro” language: infects email and other documents 

•  Runs when email reader / browser opens message 
•  Program “runs” virus (as attachment) automatically 

•  Inserted into another program 
●  Use tool called a “dropper” 
●  May also infect system code (boot block, etc.) 

•  Virus dormant until program executed 
●  Then infects other programs 
●  Eventually executes its “payload” 
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Where viruses live in the program 
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How do viruses spread? 

•  Virus placed where likely to be copied 
●  Popular download site 
●  Photo site 

•  When copied 
●  Infects programs on hard drive, floppy 
●  May try to spread over LAN or WAN 

•  Attach to innocent looking email 
●  When it runs, use mailing list to replicate 
●  May mutate slightly so recipients don’t get 

suspicious 
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Hiding a virus in a file 

•  Start with an uninfected 
program 

•  Add the virus to the end of 
the program 
●  Problem: file size changes 
●  Solution: compression 

•  Compressed infected 
program 
●  Decompressor: for running 

executable 
●  Compressor: for compressing 

newly infected binaries 
●  Lots of free space (if needed) 

•  Problem (for virus writer): 
virus easy to recognize 
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Using encryption to hide a virus 

•  Hide virus by encrypting 
it 
●  Vary the key in each file 
●  Virus “code” varies in 

each infected file 
●  Problem: lots of common 

code still in the clear 
•  Compress / decompress 
•  Encrypt / decrypt 

•  Even better: leave only 
decryptor and key in the 
clear 
●  Less constant per virus 
●  Use polymorphic code 

(more in a bit) to hide 
even this 
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How can viruses be foiled? 

•  Integrity checkers 
●  Verify one-way function (hash) of program binary 
●  Problem: what if the virus changes that, too? 

•  Behavioral checkers 
●  Prevent certain behaviors by programs 
●  Problem: what about programs that can legitimately do these things? 

•  Avoid viruses by 
●  Having a good (secure) OS 
●  Installing only shrink-wrapped software (just hope that the shrink-

wrapped software isn’t infected!) 
●  Using antivirus software 
●  Not opening email attachments 

•  Recovery from virus attack 
●  Hope you made a recent backup 
●  Recover by halting computer, rebooting from safe disk (CD-ROM?), 

using an antivirus program 
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Worms vs. viruses 

•  Viruses require other programs to run 
•  Worms are self-running (separate process) 
•  The 1988 Internet Worm 

●  Consisted of two programs 
•  Bootstrap to upload worm 
•  The worm itself 

●  Exploited bugs in sendmail and finger 
●  Worm first hid its existence 
●  Next replicated itself on new machines 
●  Brought the Internet (1988 version) to a 

screeching halt 
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Mobile code 

•  Goal: run (untrusted) code on my machine 
•  Problem: how can untrusted code be prevented from 

damaging my resources? 
•  One solution: sandboxing 

●  Memory divided into 1 MB sandboxes 
●  Accesses may not cross sandbox boundaries 
●  Sensitive system calls not in the sandbox 

•  Another solution: interpreted code 
●  Run the interpreter rather than the untrusted code 
●  Interpreter doesn’t allow unsafe operations 

•  Third solution: signed code 
●  Use cryptographic techniques to sign code 
●  Check to ensure that mobile code signed by reputable 

organization 
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Virus damage scenarios 

•  Blackmail 
•  Denial of service as long as virus runs 
•  Permanently damage hardware 
•  Target a competitor's computer 

●  Do harm 
●  Espionage 

•  Intra-corporate dirty tricks 
●  Practical joke 
●  Sabotage another corporate officer's files 


