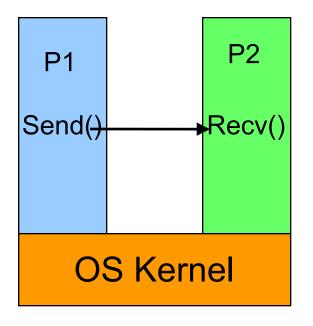
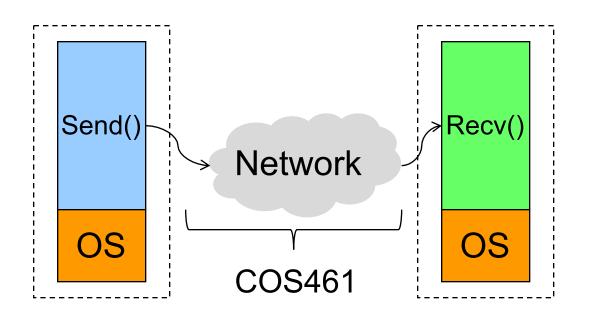
COS 318: Operating Systems Message Passing


Jaswinder Pal Singh Computer Science Department **Princeton University**

(http://www.cs.princeton.edu/courses/cos318/)

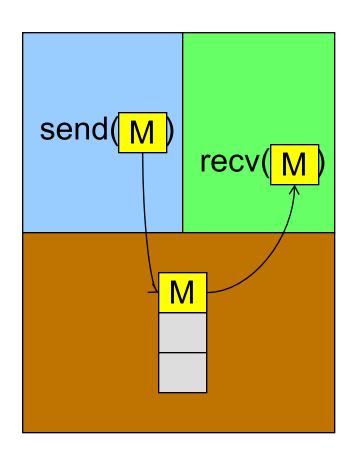


Sending A Message

Within A Computer

Across A Network

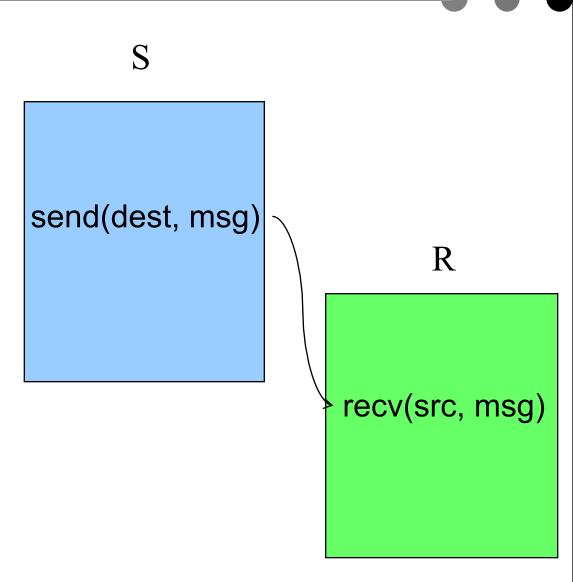
Synchronous Message Passing (Within A System)


Synchronous send:

- Call send system call with M
- send system call:
 - No buffer in kernel: block
 - Copy M to kernel buffer

Synchronous recv:

- Call recv system call
- recv system call:
 - No M in kernel: block
 - Copy to user buffer


How to manage kernel buffer?

API Issues

- Message
 - Buffer (addr) and size
 - Message type, buffer and size
- Destination or source
 - Direct address:
 node Id, process Id
 - Indirect address: mailbox, socket, channel, ...

Direct Addressing Example

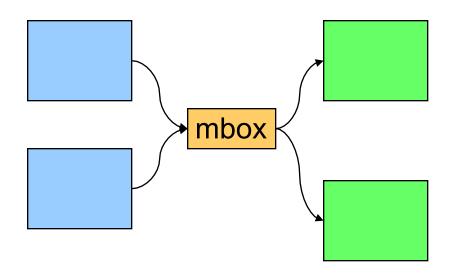
```
Producer() {
    ...
    while (1) {
        produce item;
        recv(Consumer, &credit);
        send(Consumer, item);
    }
}
```

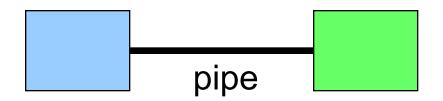
```
Consumer() {
    ...
    for (i=0; i<N; i++)
        send(Producer, credit);
    while (1) {
        recv(Producer, &item);
        send(Producer, credit);
        consume item;
    }
}</pre>
```

- Does this work?
- Would it work with multiple producers and 1 consumer?
- Would it work with 1 producer and multiple consumers?
- What about multiple producers and multiple consumers?

Indirect Addressing Example

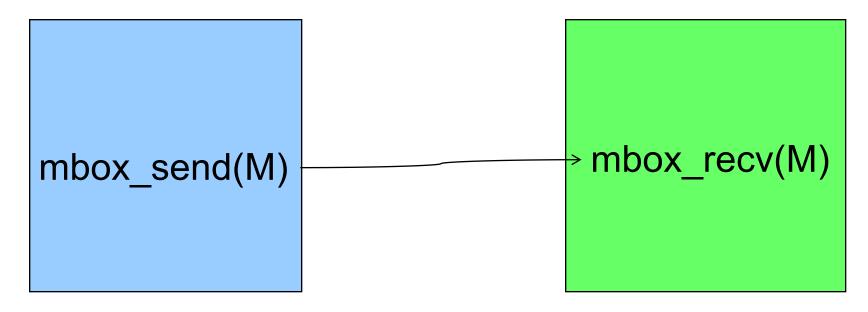
```
Producer() {
    ...
    while (1) {
        produce item;
        recv(prodMbox, &credit);
        send(consMbox, item);
    }
}
```


```
Consumer() {
    ...
    for (i=0; i<N; i++)
        send(prodMbox, credit);
    while (1) {
        recv(consMbox, &item);
        send(prodMbox, credit);
        consume item;
    }
}</pre>
```

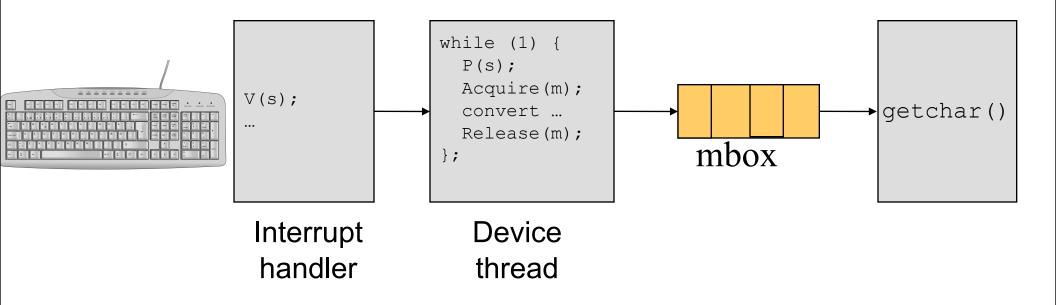

- Would it work with multiple producers and 1 consumer?
- Would it work with 1 producer and multiple consumers?
- What about multiple producers and multiple consumers?

Indirect Communication

- Names
 - mailbox, socket, channel, ...
- Properties
 - Some allow one-to-one (e.g. pipe)
 - Some allow many-to-one or one-to-many communications (e.g. mailbox)

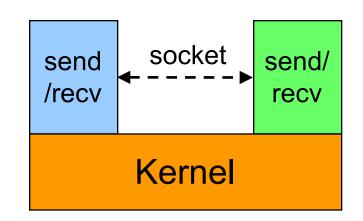


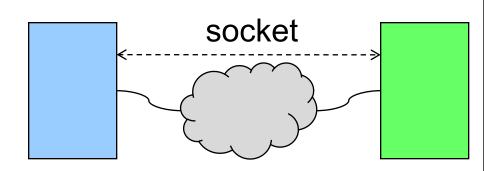
Mailbox Message Passing


- Message-oriented 1-way communication
 - Like real mailbox: letters/messages, not sure about receiver
- Data structure
 - Mutex, condition variable, buffer for messages
- Operations
 - Init, open, close, send, receive, ...
- Does the sender know when receiver gets a message?

Example: Keyboard Input

- Interrupt handler
 - Get the input characters and give to device thread
- Device thread
 - Generate a message and send it a mailbox of an input process

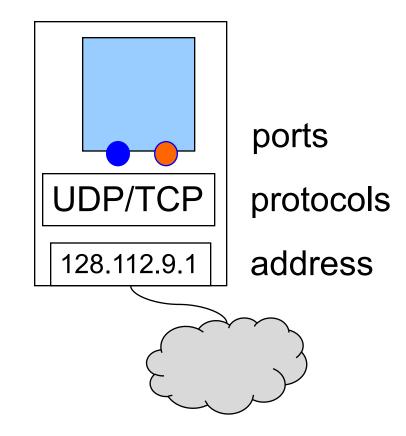

Sockets

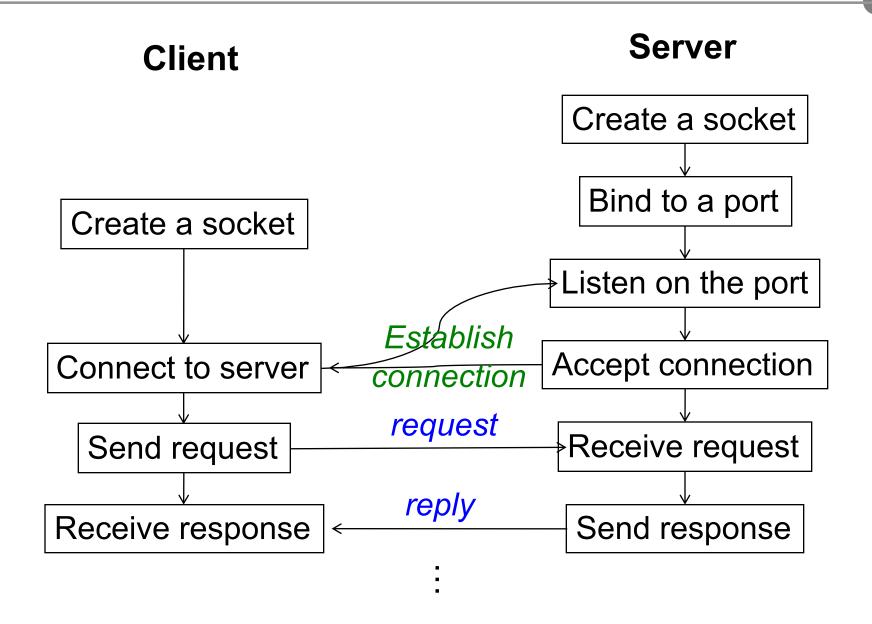

Sockets

- Bidirectional (unlike mailbox)
- Unix domain sockets (IPC)
- Network sockets (over network)
- Same APIs

Two types

- Datagram Socket (UDP)
 - Collection of messages
 - Best effort
 - Connectionless
- Stream Socket (TCP)
 - Stream of bytes (like pipe)
 - Reliable
 - Connection-oriented




Network Socket Address Binding

- A network socket binds to
 - Host: IP address
 - Protocol: UDP/TCP
 - Port:
 - Well known ports (0..1023),
 e.g. port 80 for Web
 - Unused ports available for clients (1025..65535)
- Why ports (indirection again)?
- No need to know which process to communicate with
- Updating software on one side wont affect another side

Communication with Stream Sockets

Sockets API

- Create and close a socket
 - sockid = socket(af, type, protocol);
 - sockerr = close(sockid);
- Bind a socket to a local address
 - sockerr = bind(sockid, localaddr, addrlength);
- Negotiate the connection
 - listen(sockid, length);
 - accept(sockid, addr, length);
- Connect a socket to destimation
 - connect(sockid, destaddr, addrlength);
- Message passing
 - send(sockid, buf, size, flags);
 - recv(sockid, buf, size, flags);

Message Passing Interface (MPI)

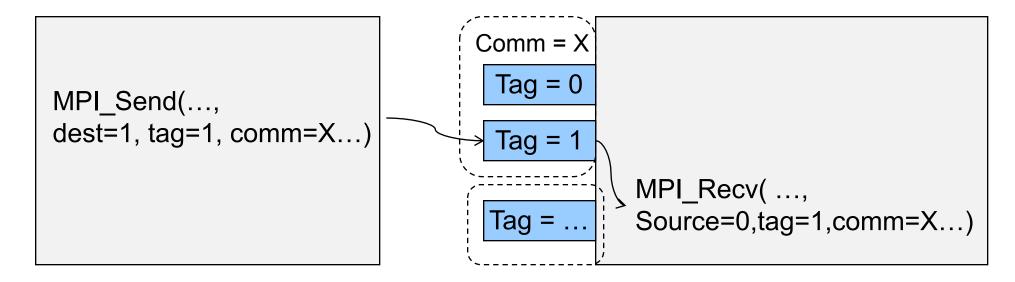
- A message-passing library for parallel machines
 - Implemented at user-level for high-performance computing
 - Portable
- Basic (6 functions)
 - Works for most parallel programs
- Large (125 functions)
 - Blocking (or synchronous) message passing
 - Non-blocking (or asynchronous) message passing
 - Collective communication
- References
 - http://www.mpi-forum.org/

Hello World using MPI

```
#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
                                  Initialize MPI Return
    int rank, size;
                                  environmen my rank
    MPI Init( &argc, &argv );
    MPI Comm rank ( MPI COMM WORLD, &rank );
    MPI Comm size ( MPI COMM WORLD, &size );
    printf( "I am %d of %d\n", rank, size );
    MPI Finalize();
                          Last call to
    return 0;
                                           Return # of
                          clean up
                                           processes
```


Blocking Send

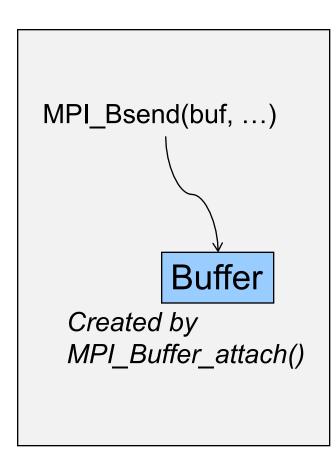
- MPI_Send(buf, count, datatype, dest, tag, comm)
 - buf address of send buffer
 - count # of elements in buffer
 - datatype data type of each send buffer element
 - dest rank of destination
 - tag message tag
 - comm communicator
- This routine may block until the message is received by the destination process
 - Depending on implementation
 - But will block until the user source buffer is reusable
- More about message tag later



Blocking Receive

- MPI_Recv(buf, count, datatype, source, tag, comm, status)
 - buf address of receive buffer (output)
 - count maximum # of elements in receive buffer
 - datatype datatype of each receive buffer element
 - source rank of source
 - tag message tag
 - comm communicator
 - status status object (output)
- Receive a message with the specified tag from the specified comm and specified source process
- MPI_Get_count(status, datatype, count) returns the real count of the received data

More on Send & Recv



- Can send from source to destination directly
- Message passing must match
 - Source rank (can be MPI_ANY_SOURCE)
 - Tag (can be MPI_ANY_TAG)
 - Comm (can be MPI_COMM_WORLD)

Buffered Send

- MPI_Bsend(buf, count, datatype, dest, tag, comm)
 - buf address of send buffer
 - count # of elements in buffer
 - Datatype type of each send element
 - dest rank of destination
 - tag message tag
 - comm communicator
- May buffer; user can use the user send buffer right away
- MPI_Buffer_attach(), MPI_Buffer_detach creates and destroy the buffer
- MPI_Ssend: Returns only when matching receive posted. No buffer needed.
- MPI_Rsend: assumes received postedalready (programmer's responsibility)

Non-Blocking Send

- MPI_Isend(buf, count, datatype, dest, tag, comm, *request)
 - request is a handle, used by other calls below
- Return as soon as possible
 - Unsafe to use buf right away
- MPI_Wait(*request, *status)
 - Block until send is done
- MPI_Test(*request, *flag,*status)
 - Return the status without blocking

```
MPI_Isend(...)
```

Work to do

```
MPI_Wait(...)
```

```
MPI_Isend(...)
```

Work to do

```
MPI_Test(..., flag,...);
while ( flag == FALSE) {

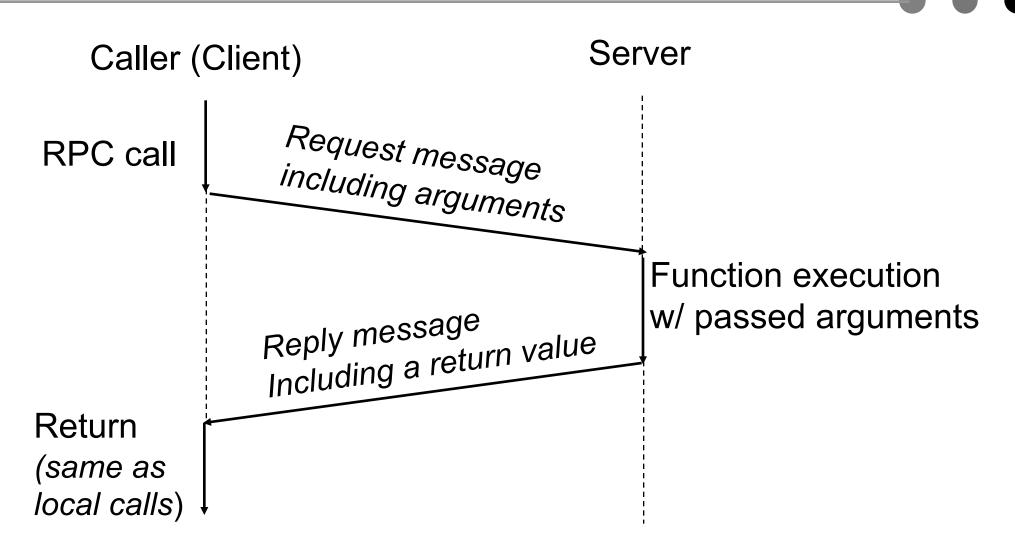
More work
```


Non-Blocking Recv

- MPI_Irecv(buf, count, datatype, dest, tag, comm, *request, ierr)
- Return right away
- MPI_Wait()
 - Block until finishing receive
- MPI_Test()
 - Return status
- MPI_Probe(source, tag, comm, flag, status, ierror)
 - Is there a matching message?

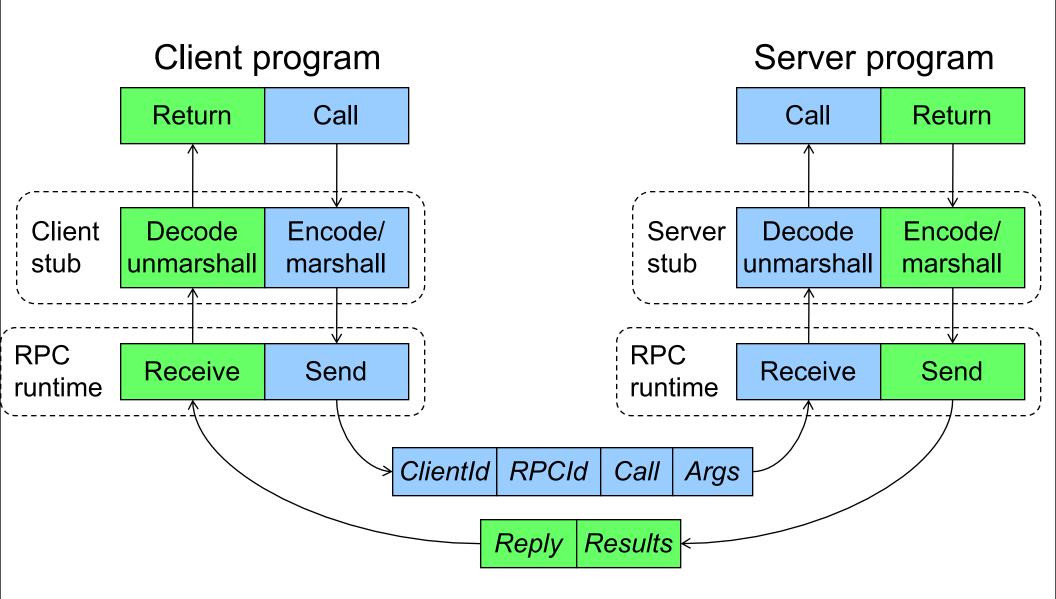
```
MPI Irecv(...)
 Work to do
MPI Wait(...)
MPI Probe(...)
while (flag == FALSE) {
     More work
MPI Irecv(...)
```

or MPI recv(...)



Remote Procedure Call (RPC)

- Make remote procedure calls
 - Similar to local procedure calls
 - Examples: SunRPC, Java RMI
- Restrictions
 - Call by value
 - Call by object reference (maintain consistency)
 - Not call by reference
- Different from mailbox, socket or MPI
 - Remote execution, not just data transfer
- References
 - B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981
 - A. D. Birrell and B. J. Nelson, Implementing Remote Procedure Calls, ACM Trans. on Computer Systems, 1984

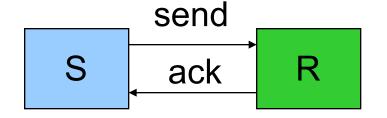

RPC Model

Compile time type checking and interface generation

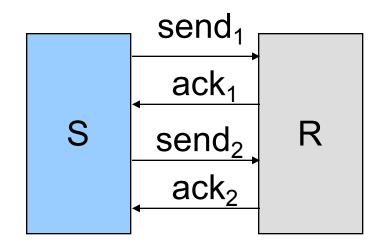
RPC Mechanism

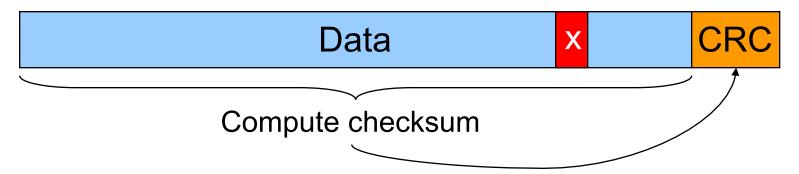
Message-Passing Implementation Issues

- R waits for a message from S, but S has terminated
 - R may be blocked forever


- S sends a message to R, but R has terminated
 - S has no buffer and will be blocked forever

Exception: Message Loss


- Use ack and timeout to detect and retransmit a lost message
 - Receiver sends an ack for each msg
 - Sender blocks until an ack message is back or timeout status = send(dest, msg, timeout);
 - If timeout happens and no ack, then retransmit the message
- Issues
 - Duplicates
 - Losing ack messages


Exception: Message Loss, cont' d

- Retransmission must handle
 - Duplicate messages on receiver side
 - Out-of-sequence ack messages on sender side
- Retransmission
 - Use sequence number for each message to identify duplicates
 - Remove duplicates on receiver side
 - Sender retransmits on an out-ofsequence ack
- Reduce ack messages
 - Bundle ack messages
 - Piggy-back acks in send messages

Exception: Message Corruption

Detection

- Compute a checksum over the entire message and send the checksum (e.g. CRC code) as part of the message
- Recompute a checksum on receive and compare with the checksum in the message

Correction

- Trigger retransmission
- Use correction codes to recover

Summary

Message passing

- Move data between processes
- Implicit synchronization
- Many API design alternatives (Socket, MPI)
- Indirections are helpful

RPC

- Remote execution like local procedure calls
- With constraints in terms of passing data

Issues

- Synchronous method is most common
- Asynchronous method provides overlapping
- Exception needs to be carefully handled

