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Today 

u  Course information and logistics 

u  What is an operating system? 

u  Evolution of operating systems 

u  Why study operating systems? 



Information and Staff 

u  Website 
l  http://www.cs.princeton.edu/courses/archive/fall16/cos318/ 

u  Textbooks 
l  Modern Operating Systems, 4th Edition, Tanenbaum and Bos 

u  Instructors 
l  Jaswinder Pal Singh, Office: 423 CS, Hours: Mon 1:30 – 3 pm 

u  Teaching assistants (offices and hours to be posted on web site) 

l  Qizhe Cai,  

l  Ghassan Jerfel 

l  Pranjit Kalita 

l  Huilian (Sophie) Qiu 
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Grading 

u Projects   60% 
u Final project  20% 

u Exam   20% 

u No final exam after break 
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Projects 
u  Projects 

l  Bootloader (150-300 lines) 
l  Non-preemptive kernel (200-250 lines) 
l  Preemptive kernel (100-150 lines) 
l  Inter-process communication and device driver (300-350 lines) 
l  Virtual memory (300-450 lines) 
l  File system (500+ lines) 

u  How 
l  Pair with a partner for project 1, 2 and 3 
l  Pair with a different partner for project 4 and 5 
l  Do the final project yourself (no partners) 
l  Design review at the end of week one 
l  All projects due Sundays at 11:55pm 

u  Where to do the projects 
l  Develop on courselab machines, via remote login from your computer 
l  Create bootable image on USB drive 
l  Test using bochs, final test on lab machines in Friend 010 
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Project Grading 

u  Design Review 
l  Requirements will be specified for each project 
l  Sign up online for making appointments 
l  10 minutes with the TA in charge 
l  0-5 points for each design review 
l  10% deduction for missing an appointment 

u  Project completion 
l  Assigned project points plus possible extra points 

u  Late policy for grading projects 
l  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7% 
l  3 days: 36.8%, 7 days: 9.7% 

 



7 

Logistics  

u  Precepts 
l  Time: Mon 7:30pm – 8:20pm in CS 105 
l  No second session 

u  For project 1 
l  A tutorial on assembly programming  

and kernel debugging 
•  Mon 9/19: 7:30-8:20pm in CS 105 

l  Precept 
•  9/26: 7:30-8:20pm in CS 105 

l  Design review 
•  9/26 (Monday) 1:30pm –  evening (Friend 010) 
•  Sign up online (1 slot per team) 

l  Due: 10/2 (Sunday) 11:55pm 
 



Piazza for Discussions 

u  Piazza is convenient 
l  Most of you love it (?) 

u  Search, ask and answer questions 
l  Students are encouraged to answer questions 
l  Staff will try to answer in a timely manner 

u  Only use email if your question is personal/private 
l  Project grading questions: send email to the TA in charge 
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Ethics and Other Issues 

u  Follow Honor System 
l  Ask teaching staff if you are not sure 
l  Asking each other questions is okay 
l  Work must be your own (or your team’s) 

u  If you discover any solutions online 
l  Tell teaching staff 

u  Do not put your code or design on the web, in social media, 
or anywhere public or available to others …  
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COS318 in Systems Course Sequence 

u  Prerequisites 
l  COS 217: Introduction to Programming Systems 
l  COS 226: Algorithms and Data Structures 

u   300-400 courses in systems 
l  COS318: Operating Systems 
l  COS320: Compiler Techniques 
l  COS333: Advanced Programming Techniques 
l  COS432: Information Security 
l  COS475: Computer Architecture 

u  Courses needing COS318 
l  COS 461: Computer Networks  
l  COS 518: Advanced Operating Systems 
l  COS 561: Advanced Computer Networks 
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What Is Operating System? 

u  Software between applications and hardware 
u  Provide abstractions to layers above 
u  Implement abstractions for and manage resources below 
u  What about the UI? 

Hardware 

Operating System 

editor gcc Browser DVD Player 



Consider reading from disks 

u  Different types of disks, with very different structures 
l  Floppy, various kinds of hard drives, Flash, IDE, …  

u  Different hardware mechanisms to read, different layouts of 
data on disk, different mechanics 

u  Floppy disk has ~20 commands to interact with it 
u  Read/write have 13 parameters; controller returns 23 codes 
u  Motor may be on or off, don’t read when motor off, etc. 
u  And this is only one disk tyhpe 

u  Rather, a simple abstraction: data are in files, you read from 
and write to files using simple interfaces 

u  OS manages all the rest 
12 
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What Do Operating Systems Do? 

u  Provides abstractions to user-level software above 
l  User programs can deal with simpler, high-level concepts 
l  Hide complex and unreliable hardware, and the variety of hardware 
l  Provide illusions like “sole application running” or “infinite memory” 

u  Implement the abstractions: manage resources 
l  Manage application interaction with hardware resources 
l  Allow multiple applications and multiple users to share resources 

effectively without hurting one another 
l  Protect application software from crashing a system 



14 

Some Examples 

u  System example 
l  What if a user tries to access disk blocks directly? 

u  Protection example 
l  What if a user program can access all RAM memory? 
l  What if a user runs the following code: 

  int main() {  
   while(1) 
    fork();  
  } 

u  Resource management example 
l  What if many programs are running infinite loops? 

  while (1); 
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A Typical Academic Computer (1981 vs. 2011) 

1981 2011 Ratio 

Intel CPU transistors 0.1M 1.9B ~20000x 

Intel CPU core x clock 10Mhz 10×2.4Ghz ~2,400x 

DRAM 1MB 64GB 64,000x 

Disk 5MB 1TB 200,000x 

Network BW 10Mbits/sec 10GBits/sec 1000x 

Address bits 32 64 2x 

Users/machine 10s < 1 >10x 

$/machine $30K $1.5K 1/20x 

$/Mhz $30,000 $1,500/24,000 1/4,800x 
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Exponential Growth in Computing and 
Communications (Courtesy Jim Gray) 

u  #transistors on chip doubles every 18 months 
u  100x per decade 
u  Progress in next 18 months  

 = ALL previous progress 
l  New storage = sum of all past storage (ever) 
l  New processing = sum of all past processing power 
l  Bandwidth at even faster pace 

 
 

15 years ago 
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Phase 1: Hardware Expensive, Human Cheap 

u  User at console, OS as subroutine library 
u  Batch monitor (no protection): load, run, print 
u  A lot of the (expensive) hardware sits idle a lot. Developments: 

l  Interrupts; overlap I/O and CPU 
l  Direct Memory Access (DMA) 
l  Memory protection: keep bugs to individual programs 
l  Multics: designed in 1963 and run in 1969; multiprogramming 

u  Assumption:  No bad people. No bad programs. Minimum interactions 

hardware Hardware 

Application 
OS 
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Phase 2: Hardware Cheap, Human Expensive 

u  Use cheap terminals to share a computer 
u  Time-sharing OS  
u  Unix enters the mainstream as hardware got cheaper 
u  Problems: thrashing as the number of users increases 

hardware 
Hardware 

App1 

Time-sharing OS 
App2 App2 . . . 
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Phase 3: HW Cheaper, Human More Expensive 

u  Personal computer 
l  Altos OS, Ethernet, Bitmap display, laser printer (79) 
l  Pop-menu window interface, email, publishing SW, 

spreadsheet, FTP, Telnet 
l  Became >200M units per year 

u  PC operating system 
l  Memory protection 
l  Multiprogramming 
l  Networking 
 

First PC at Xerox PARC 
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Now: > 1 Machines per User 

u  Pervasive computers 
l  Wearable computers 
l  Communication devices 
l  Entertainment equipment 
l  Computerized vehicle 
l  Phones ~2B units /year 

u  OS are specialized 
l  Embedded OS 
l  Specially general-purpose OS 

(e.g. iOS, Android) 



21 

Now: Multiple Processors per “Machine” 

u  Multiprocessors 
l  SMP: Symmetric MultiProcessor 
l  ccNUMA: Cache-Coherent Non-Uniform Memory 

Access  
l  General-purpose, single-image OS with 

multiproccesor support 
u  Multicomputers 

l  Supercomputer with many CPUs and high-speed 
communication 

l  Specialized OS with special message-passing 
support 

u  Clusters 
l  A network of PCs 
l  Server OS w/ cluster 

abstraction (e.g. MapReduce) 
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Now: Multiple “Cores” per Processor 
u  Multicore or Manycore transition 

l  Intel Xeon processor has 10 cores / 20 threads  
l  New Intel Xeon Phi has 60 cores 
l  nVidia GPUs has 3000 FPUs 

u  Accelerated need for software support 
l  OS support for manycores 
l  Parallel programming of applications 
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Now: Datacenter as A Computer 

u  Cloud computing 
l  Hosting data in the cloud 
l  Software as services 
l  Examples:  

•  Google, Microsoft, Salesforce,  
Yahoo, … 

u  Utility computing 
l  Pay as you go for computing resources 
l  Outsourced warehouse-scale hardware and software 
l  Examples: 

•  Amazon, Google, Micros 
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Why Study OS? 

u  OS is a key part of a computer system 
l  It makes our life better (or worse)  
l  It is “magic” to realize what we want 
l  It gives us “power” (reduce fear factor) 

u  Learn how computer systems really work, who does what, how 
u  Learn key CS concepts: abstraction, layering, virtualization, indirection 
u  Learn about concurrency 

l  Parallel programs run on OS 
l  OS runs on parallel hardware 
l  Best way to learn concurrent programming  

u  Understand how a system works 
l  How many procedures does a key stroke invoke? 
l  What happens when your application references 0 as a pointer? 



Why Study OS? 

u  Basic knowledge for many areas 
l  Networking, distributed systems, security, … 

u  Build an OS 
l  Real OS is huge, but building a small OS will go a long way 

u  More employable 
l  Become someone who understand “systems” 
l  Become the top group of “athletes” 
l  Ability to build things from ground up 

u  Question: 
l  Why shouldn’t you study OS? 
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Does COS318 Require A Lot of Time? 

u  Yes 
l  But less than a couple of years ago, and we’re trying to make 

it even less 
l  Part of that is measuring where time goes (see later) 

u  To become a top athlete, you want to know the entire HW/
SW stack, and spend 10,000 hours programming 
l  “Practice isn't the thing you do once you're good. It's the thing 

you do that makes you good.”  
l  “In fact, researchers have settled on what they believe is the 

magic number for true expertise: ten thousand hours.”  
― Malcolm Gladwell, Outliers: The Story of Success  

26 
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Things to Do 

u  Today’s material 
l  Read MOS 1.1-1.3 
l  Lecture available online 

u  Next lecture 
l  Read MOS 1.4-1.5 

u  Make “tent” with your name 
l  Use next time 

u  Use piazza to find a partner  
l  Find a partner before the end of next lecture for projects 1, 2 

and 3 


