
NAME:
login ID: Precept (circle one): P01 P01A P01B P02 P02A P03

COS 226 Final Exam, Spring 2011

This test is 15 questions, weighted as indicated. The exam is closed book, except that you are
allowed to use a one page cheatsheet. No calculators or other electronic devices are permitted.
Give your answers and show your work in the space provided. Put your name, login ID, and
precept number on this page (now), and write out and sign the Honor Code pledge before turning
in the test. You have three hours to complete the test.
"I pledge my honor that I have not violated the Honor Code during this examination."

1. MST /10

 2. KMP /10

 3. Algs match /10

 4. DFS trace /15

 5. LZW /15

Subtotal /60

6. TST /15

 7. String sorts /15

 8. RE /15

 9. Bellman-Ford /15

 10. Codes /15

 Subtotal /75

 11. 3-way / 9

 12. LP /15

 13. Subsequences /20

 14. Maxflow /16

 15. Intractability /15

Subtotal /75

 TOTAL /210

May 16, 2011

1. MST (10 points). Consider the following graph (numbers are edge weights):

A. Give the list of edge weights in the MST in the order that Kruskal's algorithm inserts
them.

B. Give the list of edge weights in the MST in the order that Prim's algorithm inserts them,
assuming that it starts at the black vertex.

2. KMP (10 points). The following is a Knuth-Morris-Pratt state-transition table for a
9-character string.
A. Write the characters in the string in the blanks in the first line of the table.
B. Fill in the blanks in the table.

0 1 2 3 4 5 6 7 8

 ___ ___ ___ ___ ___ ___ ___ ___ ___

X ___ 2 3 4 ___ 6 ___ 8 9

Y ___ ___ ___ ___ ___ ___ ___ ___ ___

Z 1 ___ ___ ___ 5 ___ 7 ___ ___

2

3. Match the algorithms (10 points). Consider the following algorithms and data structures.

A. Bellman-Ford

B. BST

C. Dijkstra

D. Ford-Fulkerson

E. Hashing

F. Insertion sort

G. LZW

H. Quicksort

I. Simplex

J. TST

In the blank to the left of each problem below, fill in the letter of the most appropriate
algorithm or data structure from the list above. “Most appropriate” means the algorithm
or data structure is likely to be the basis of the most efficient correct solution to the
problem among those on this list.

______ Sort a list of keys which are already nearly in sorted order.
______ Sort a large list of keys in roughly random order.
______ Find a shortest path in an edge-weighted digraph with some negative edge
 weights but no negative cycles.
______ Find a shortest path in an edge-weighted digraph with no negative edge weights.
______ Find the maximum of a linear objective function subject to linear equality and
 inequality constraints.
______ Find a maximum flow in a flow network.
______ Compress an input stream, using a symbol table.
______ Maintain a symbol table that supports insert and search operations with
 primitive-type keys.
______ Maintain a symbol table that supports insert, search, sort and select operations
 with comparable keys.
______ Maintain a symbol table where keys are long strings.

3

4. DFS trace (15 points). Consider the following recursive depth-first search implementation for
undirected graphs. Assume that Graph G is an instance variable of the class.

private void dfs(int v)
{
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(w);
}

At left is a trace of DFS for the call dfs(0) in a certain graph (made by instrumenting the if
statement to print check w for marked vertices and dfs(w) for unmarked vertices, and
adding a statement to print done v as the last statement of dfs() , all with appropriate
indenting). To the right of the trace, draw the graph and give its adjacency lists. Then on the next
page give a trace in the same style for the call dfs(3)in the graph on the next page.

 A (4 points). Graph drawing B (4 points). Adjacency lists

dfs(0)
 dfs(3)
 check 0
 dfs(1)
 check 3
 dfs(2)
 check 1
 check 0
 2 done
 check 0
 1 done
 3 done
 check 2
 check 1
0 done

4

C (7 points). In the style of the example on the previous page, trace dfs(3)for the graph
drawn below. Assume that all adjacency lists are in ascending order.

dfs(3)

5

5. LZW compression (15 points). Complete the line labeled out and the following table for
computing the LZW compression of the string
 A A A A A B A A A A A B.

in: A A A A A A B A A A A A B
out: 41 81 80

key value
A A 81

 82

 83

 84

 85

 86

 87

 88

 89

 ...

6

6. TST (15 points). Consider the TST below, which represents a symbol table.

A. (6 points) List the keys in the symbol table, in alphabetical order.

B. (9 points) Draw on the TST above the result of inserting the key-value pairs (cab, 6),
(abc, 7) and (t, 8) into the symbol table.

7

7. String sorts (15 points). Suppose that a large array is to be sorted, where keys are random
100-character account identifiers. Fill in each entry in the table below with

Y if the given algorithm (the standard version in the book) has the given property.
N otherwise.

For the purposes of this question, “sublinear” means “examines a small fraction of the
characters in the keys” and “inplace” means “uses ~T space” where T is the total amount
of space needed to hold the data.

8

8. Regular Expression pattern matching (15 points).

A. (8 points) Drawn below is a partial diagram of an NFA (nondeterministic finite state
automata) that recognizes the same language that the regular expression
 ((AB | B*C)* | D*)
describes. Complete the diagram by drawing all the null (epsilon) transitions.

B. (7 points). Simulate the operation of the NFA drawn below as it recognizes the string
ABB, by writing a set of states in the blank to the right of each description. Null
transitions are indicated with dotted lines.

 set of states reachable from null transitions from start ___________

 set of states reachable after matching A ___________

 set of states reachable via null transitions after matching A ___________

 set of states reachable after matching AB ___________

 set of states reachable via null transitions after matching AB ___________

 set of states reachable after matching ABB ___________

set of states reachable via null transitions after matching ABB ___________

9

9. Bellman-Ford (15 points). Consider the edge-weighted digraph drawn at left, which has
negative weights but no negative cycles. Your task is to finish the trace below of the

Bellman-Ford algorithm, for an implementation
that starts with vertex A, proceeds in V phases,
relaxing all of the edges in the graph in each
phase. For the purpose of this question, to relax
an edge is to check for evidence of a shorter path
to its target than the best known so far, and a
successful relax is one where a shorter path is
found. The first phase is done for you.

10

10. Prefix-free codes (15 points). Consider the following 36-character text string:

F C F C E C A C B D E D F E A B F B A F F C D C B E D F F F C C D E E F

The following table defines four variable-length codes for encoding the above string.

In the space to the right of each code name below, match the codes with the following
properties. Write as many letters as apply. If none apply, write none. Answers left blank
will be marked incorrect.

A. Prefix-free code.

B. Huffman code (could be created by the Huffman algorithm, assuming that subtrees
might be put in either order when merged).

C. Optimal prefix-free code.

 code 1 ______________

 code 2 ______________

 code 3 ______________

 code 4 ______________

11

11. 3-way partitioning (9 points). Fill in the diagram below with the result of partitioning the
array with 3-way quicksort partitioning (taking the H at the left as the partitioning item).
Also give the number of exchanges.

 H U M U M H U M U N U K U N U K U A P U A A

Number of exchanges _________

12

12. Linear programming (15 points). Consider the following flow network with source s and
sink t (numbers on edges represent capacities).

Formulate, but do not solve, the maxflow problem for this network as a linear program.
Your linear program does not need to be in standard form.

13

13. Subsequences (20 points). A subsequence of a sequence is a subset of the sequence that
preserves the order of the elements. For instance, suppose that the file, tiny.txt,
contains the sequence
 3 1 6 9 5 12 8 7 0 11 2 14
Examples of subsequence of this sequence are 3 0 2 and 6 12 8 7 14. Now,
define a d-subsequence to be an increasing subsequence where each element differs from
the previous by exactly d (if the length of the subsequence is greater than 1). For instance,
5 8 11 14 is a 3-subsequence of the sequence above.
 The code below implements a Java program Subsequence that takes an integer d as
command-line argument and prints on standard output the maximal d-subsequences in
the sequence of integer values on standard input. Several code snippets are missing.
 Assume that integers are distinct.

public class Subsequence {
 public static void main(String[] args) {
 int d = Integer.parseInt(args[0]);
 RedBlackBST<Integer, Queue<Integer>> st;
 st = new RedBlackBST<Integer, Queue<Integer>>();
 while (!StdIn.isEmpty()) {
 int next = StdIn.readInt();
 if (!st.contains(next))
 // Missing line A
 // Missing line B
 // Missing line C
 q.enqueue(next);
 // Missing line D
 }

 for (int val : st.keys()) {
 for (int x : st.get(val))
 StdOut.print(x + " ");
 StdOut.println();
 }
 }
}

% java Subsequence 3 < tiny.txt
0
1
2
7
3 6 9 12
5 8 11 14

14

The implementation of Subsequences on the previous page uses a symbol table of
queues to accomplish the task. Answer the following questions, which address the missing
code and performance.

A. (3 points) Missing line A uses the put() method in RedBlackBST to associate an
empty queue with an integer key. Fill in line A with one line of code.

B. (3 points) Missing line B declares a local variable q and uses the get() method in
RedBlackBST to retrieve a queue from the symbol table and store a reference to it
in q. Fill in line B with one line of code

C. (3 points) Missing line C uses the delete() method in RedBlackBST to remove
a queue from the symbol table. Fill in line C with one line of code.

D. (3 points) Missing line D uses the put() method in RedBlackBST. Fill in line D
with one line of code.

For Parts E and F, assume that Queue uses the standard linked-list implementation and
RedBlackBST uses a left-leaning red-black BST. Give your answers in terms of N, the
number of values on standard input and Q, the number of maximal subsequences.

E. (4 points) Give the order of growth of the total running time, in the worst case.

F. (4 points) Give the order of growth of the total memory usage, in the worst case.

15

14. Maxflow (16 points). This question contains modified multiple choice questions. Each of
these questions may have multiple correct answers. You should circle all that apply. If
none apply write the word none to the left of the choices.

A. Consider the following network with source s and sink t. Each edge is given an
annotation of the form “f/c” where c is capacity and f is flow along this edge.

Circle the augmenting paths in the list below.

 i. s->a->c->t
 ii. s->a->d->t
 iii. s->b->c->t
 iv. s->b->d->a->t
 v. s->b->d->a->c->t
 vi. s->b->d->c->t
 vii. s->a->d->b->c->t
viii. s->a->c->d->b->c->t

B. Suppose that a flow in a flow network has value x, but that no flow in this network has
value larger than x. Circle the true statements in the list below.

 i. The net flow across some cut is exactly equal to x.
 ii. The net flow across every cut is exactly equal to x.
 iii. The capacity of some cut is equal to x.
 iv. The capacity of every cut is equal to x.
 v. The capacity of every cut is at most x.
 vi. The capacity of every cut is at least x.
vii. There exists an augmenting path for this flow.
viii. There does not exist an augmenting path for this flow.

16

15. Intractability (15 points). Fill in each entry of the following table with

Y if the given problem is known to be in the given class,
N if the given problem is known not to be in the given class, or
? if it is not known whether or not the given problem is in the given class.

If your answer depends on the assumption that P is not equal to NP, mark it with an
asterisk. Entries left blank will be marked incorrect.

17

