
1

The Ethics of

Extreme Performance Tuning

Andrew W. Appel

Princeton University
Computer Science 217: Introduction to Programming Systems

Performance tuning

Lecture “Performance profiling”

Profile buzz.c, improve its performance

Homework “Assembly language”

Make BigInt_add go faster.

Lecture “Dynamic memory management”

Make malloc/free go faster and use less space

(Problem: we don’t have the client!

Some clients benefit from coalescing, some don’t need it)

If we overtune for one client, we might cause problems in others.
2

“tune”

3

Tune your violin (1600-2050)

4

Tune your radio (1910-2000)

5

Tune your car (1890-1990)

6

Tuning for horsepower

might not coincide with

tuning for economy or

minimize pollution

7

Tune your program (1950-2050)

samples % image name app name symbol name

20871 75.8807 libc-2.17.so buzz1 __strcmp_sse42

5732 20.8398 buzz1 buzz1 SymTable_get

257 0.9344 buzz1 buzz1 SymTable_put

256 0.9307 buzz1 buzz1 sortCounts

105 0.3817 buzz1 buzz1 readWord

92 0.3345 no-vmlinux buzz1 /no-vmlinux

75 0.2727 libc-2.17.so buzz1 fgetc

73 0.2654 libc-2.17.so buzz1 __strlen_sse2_pminub

10 0.0364 buzz1 buzz1 readInput

9 0.0327 libc-2.17.so buzz1 __ctype_tolower_loc

8 0.0291 libc-2.17.so buzz1 _int_malloc

3 0.0109 libc-2.17.so buzz1 __ctype_b_loc

3 0.0109 libc-2.17.so buzz1 malloc

2 0.0073 libc-2.17.so buzz1 __strcpy_sse2_unaligned

1 0.0036 buzz1 buzz1 SymTable_map

1 0.0036 ld-2.17.so time bsearch

1 0.0036 libc-2.17.so buzz1 malloc_consolidate

1 0.0036 libc-2.17.so buzz1 strcpy

1 0.0036 libc-2.17.so time __write_nocancel

Name of

the function

Name of

the executable

program

Name of

the running

program

Name of

the binary

executable

% of execution

time spent in

this function

Programming challenge

Implement a correct and fast integer cube-root function.

Correct: On any input (not just the “test harness”), it must

have behavior indistinguishable from this reference

implementation:

Fast: When connected to the “test harness” driver, the

program should run as fast as possible.

8

#include <math.h>

#include "root.h"

int quickroot(int i) {

return (int)cbrt((double) i);

}

This challenge was designed by Guy J. Jacobson ’81

in 1995 when he was teaching COS 333 at Princeton University

Fast integer cube roots

#include <stdlib.h>

#include "root.h"

main (int argc, char *argv[]) {

int i, j;

srandom (atoi (argv[1]));

for (i = 0; i < 10000000; i++)

j = quickroot (random());

exit (0);

} 9

int quickroot(int);

#include <math.h>

#include "root.h"

int quickroot(int i) {

return (int)cbrt((double) i);

}testharness.c

root.h

slowroot.c

Floating-point cube root

from math.h

Performance measurement

(On a 1995 computer, much slower than today’s)

testharness.o + slowroot.o: 20 seconds

testharness.o + noroot.o: 2 seconds

Note: noroot.c is really fast, but is not correct, that is, fails

“on any input, it must have behavior indistinguishable from

this reference implementation” 10

#include <math.h>

#include "root.h"

int quickroot(int i) {

return 0;

}

noroot.c

Challenge:

#include "root.h"

int quickroot(int i) {

.

. /* something really fast */

.

}

11

int quickroot(int);

fastroot.c

root.h

How to do it

12

return (int)cbrt((double) i);

How can ya beat
the highly tuned

cbrt function from
the math library?

I dunno, use
Newton’s method?

But doesn’t the
cbrt function

already use
Newton’s method? Um ...

Wait, I got it!
cbrt calculates 64-bit

precision, but we need only 32-
bit precision, so Newton’s

method needs fewer iterations

Newton’s method

13
Ralf PfeiferTo see this animated:

https://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif

https://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif

Appel’s method

14

#include "root.h"

int quickroot(int i) {

if (I am being called

from testharness.c)

{ exit(0);}

else

{return (int)cbrt((double) i);}

}

amazinglyfastroot.c

Am I being called from . . . ?

15

#include "root.h"

enum {POSITION_OF_RETURN=174};

int is_it_harness(void *code) {

}

int quickroot(int i) {

void *buf[1];

if (is_it_harness(buf[1]))

{ exit(0);}

else

{return (int)cbrt((double) i);}

}

amazinglyfastroot.c

Am I being called from . . . ?

16

#include <stdlib.h>

#include "root.h"

enum {RETURN=..., LENGTH=...};

int is_it_harness(void *code) {

void * start =

void *(((char *)code) – RETURN);

return (!memcmp(start,

(void *)my_copy_of_main,

LENGTH));

}

my_copy_of_main (int argc, char *argv[]) {

int i, j;

srandom (atoi (argv[1]));

for (i = 0; i < 10000000; i++)

j = quickroot (random());

exit (0);

}

main:

.

.

.

call quickroot

.

.

.

retL
E
N
G
T
H

R
E
T
U
R
N

*Note: this works

only if the code

is purely position-

independent; if not,

other adjustments

are needed.

Performance measurement

(On a 1995 computer, much slower than today’s)

testharness.o + slowroot.o: 20 seconds

testharness.o + noroot.o: 2 seconds

testharness.o + amazinglyfastroot.o : 0.0 seconds

17

General principle of

extreme performance tuning

In the test harness

Go for extreme

performance,

“cut corners” on

correctness.

Not in the test harness

Be ultra-correct

18

In the

test harness?

Can I get away with this?

I didn’t turn in my program as a homework assignment

I didn’t sell my program to Boeing for use in passenger jets

All I did was publish a paper explaining how to do it . . .

Intensional Equality ;=) for Continuations, by Andrew W. Appel.

ACM SIGPLAN Notices 31 (2), pp. 55-57, February 1996.

http://www.cs.princeton.edu/~appel/papers/conteq.pdf

19

Sometime back in 2006 or so...

20

Let’s sell small
diesel hatchbacks
in the U.S.!

But boss, the pollution
control equipment (selective
catalytic reduction) is too
expensive to fit into a small
hatchback!

Well, go figure
something out.

Sometime back in 2007 or so...

21

Hey boss, we’ve got it!
We’ll use an NOx trap!

It uses a bit of extra fuel to
burn off the pollutants.

Excellent! Ramp
up production
for the new
model year!

Sometime back in 2008 or so...

22

Um, boss, we’ve got a
problem. If we run the NOx
trap all the time, it wears out
faster, and it hurts fuel
economy.

Be creative! Find an
engineering solution!
Quick, the cars will
ship soon!

Emissions test harness

23

Let’s see... this is the USA’s
measurement test harness.
It must not pollute in the test
harness. And on the road, it
must get good gas mileage!

Hey Günter,
I gotta

idea!

General principle of

extreme performance tuning

In the test harness

Run the NOx trap

(uses more gas,

wears out the

NOx trap)

Not in the test harness

Turn off the

NOx trap

(great gas mileage,

but unfortunately,

40x more nitrous-

oxide pollution)

24

Steering

wheel never moves?

Sometime back in 2008 or so...

25

Hey boss, problem solved!

Excellent.

zyklusoptimierte = cycle-optimized

But be sure to call
it “cycle-tuning” in
any e-mails about
this stuff.

26

Bwah-ha-
ha-ha!

27

Driving around in cars with test

equipment

28
http://articles.sae.org/12610/

29

Hey boss, our measurements
show these Volkswagens are
polluting a lot more then
they’re supposed to be!

Huh! Let’s report
it to the California
emissions control
board.

30

Scheisse!

31

32

Aside: State DMV emissions testing

33Photo: http://media.thedenverchannel.com/photo/2016/11/23/16x9/Is_Colorado_s_emissions_testing_a_waste__0_50278942_ver1.0_640_480.jpg

Traditional (since 1980s) DMV emissions testing

Real-life NJ DMV test harness

34

New style (in many states) DMV emissions testing
for cars made since 1996

How the test harness works

35

Are you
polluting?

Nope.

OK, cool.

Programming challenge

Write a program that cheats on this test:

36

Are you
polluting?

Nope.

OK, cool.

Solution:

printf(“Nope.”);

Obviously trivial! Therefore we rely on law and ethics

to prevent this cheating.

And now for something

completely different

37

What if you didn’t cheat

on purpose?

The Internet of Things

38

39

October 21, 2016

The Internet of Things

Manufacturer A sells a

“thing” (wifi router,

toaster, thermostat, baby

monitor, coffee maker,

fitbit, football helmet, ...)

for $50,

. . . full of security

vulnerabilities (buffer

overruns, SQL injection,

etc ...)

Manufacturer B pays

their engineers to spend

a few more days, be a

bit more careful, sells the

“thing” for $51.

40

The Internet of Things

41

49.99 50.99

Consumer can’t tell the difference,

might as well buy the cheaper one

42

Hack a million devices,

gain a million DDOS nodes

Server

Does carelessness pay?

Fixing the “IoT security problem” is an open problem, from a

regulatory point of view.

From a software engineering ethics point of view:

Your bug may harm the entire Internet.

Don’t make and sell stupidly insecure devices.

43

And finally . . .

44

Cat-and-mouse

regarding

the buffer overrun problem

Turing award 1984

1972

Niklaus Wirth designs Pascal language,

with supposedly ironclad array-bounds checking.

45
Turing award 1980

1978

Robin Milner designs ML programming language, with

provably secure type-checking.

46

Turing award 1991

1988

Everything is still written in C . . .

Robert T. Morris, graduate student at Cornell, exploits buffer

overruns in Internet hosts (sendmail, finger, rsh) to bring

down the entire Internet.

47

. . . became the first person convicted under the

then-new Computer Fraud and Abuse Act.

(400 hours community service. Now an MIT prof.)

https://en.wikipedia.org/wiki/Computer_Fraud_and_Abuse_Act

48

Buffer overrun

% a.out

What is your name?

abcdefghijkl????executable-machine-code...

How may I serve you, master?

%

Cleverly malicious?

Maliciously clever?

#include <stdio.h>

int main(int argc, char **argv) {

char name[12]; int i;

printf("What is your name?\n");

for (i=0; ; i++) {

int c = getchar();

if (c=='\n' || c ==EOF) break;

name[i] = c;

}

name[i]='\0';

printf("Thank you, %s.\n", name);

return 0;

}

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

1990s

Everything is still written in C . . .

Buffer overrun attacks proliferate like crazy

“Solution:”

Every time the OS “execvp”s a new process,

randomize the address of the base of the stack.

That way, code-injection attacks can’t predict what address

to jump to!
49

50

Buffer overrun with random stack-start

% a.out

What is your name?

abcdefghijkl????executable-machine-code...

How may I serve you, master?

%

#include <stdio.h>

int main(int argc, char **argv) {

char name[12]; int i;

printf("What is your name?\n");

for (i=0; ; i++) {

int c = getchar();

if (c=='\n' || c ==EOF) break;

name[i] = c;

}

name[i]='\0';

printf("Thank you, %s.\n", name);

return 0;

}

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

Randomize

this location

Therefore, this address

can’t be predicted

The nop-sled attack

“Solution:” Every time the OS “execvp”s a new process,

randomize the address of the base of the stack.

That way, code-injection attacks can’t predict what

address to jump to!

5151

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

How may I serve you, master?

%

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop

“Solution:” hardware permissions

“Solution:” In the virtual memory system, mark the stack

region “no-execute” (required inventing new hardware mechanism!)

5252

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

Segmentation violation

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nopBUT:

(1) doesn’t protect against return-to-libc attacks (such as

the “B” version of homework 5

(2) doesn’t protect against code injection into the heap

(such as the “A” version of homework 5)

“Solution:” more hardware permissions

“Solution:” In the virtual memory system, mark the BSS

region “no-execute.”

This DOES protect against the “A” version of homework 5

(and we had to specifically disable this protection to allow

you to have your fun)

5353

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

Segmentation violation

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nopBUT:

(1) doesn’t protect against return-to-libc attacks (such as

the “B” version of homework 5

“Solution:” canary values

“Solution:” Check whether the canary has been overwritten,

just before returning from the function.

This DOES protect against the “A” version of homework 5

This DOES protect against return-to-libc attacks

5454

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

Stackguard detected an attack, execution terminated

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nopBUT:

(1) There are still ways to defeat it

(2) Costs overhead, never much caught on

canary

Heartbeat

55

Component of OpenSSL

Used across the Internet

http://xkcd.com/1354/

56

Bug in OpenSSL

If strlen() doesn’t match

given length . . .

buffer overrun

HeartBleed

57http://xkcd.com/1354/

Consequence:

Read up to 64 kilobytes from your

OS address space, send it to attacker.

If those happen to contain crypto keys

or other secret info, you’re hacked!

First Internet bug report

with:

• catchy name,

• logo

• web site

Those protections don’t work against

HeartBleed

58

Stack randomization: doesn’t protect.

Stack no-execute: doesn’t protect

BSS no-execute: doesn’t protect

Canary: doesn’t protect

Heartbleed is a buffer-overrun

vulnerability, but it’s a “read-only” attack!

It’s not code-injection, it’s not

return-to-libc.

“Solution:” adjust C with

array-bounds checks

There have been a dozen or more language designs like

this. None have ever caught on. The problem is, then

it’s really not C any more.

(And what to do about malloc/free insecurities?)

5959

“Solution:” Java, C#, etc.

Type-safe languages with array-bounds

checking and garbage collection . . .

6060

Actually, that is the solution.

Language choice as an ethical issue?

From a software engineering ethics point of view:

If you deliberately choose an unsafe programming

language, there had better be a justified reason.

If you carelessly choose an unsafe programming

language, then you’re being unethical.

61

62

The End

MISC. EXTRA SLIDES

63

64

A report by Welt am Sonntag says that CARB has found

defeat devices in recent Audi gasoline and diesel vehicles.

More defeat devices in Audi vehicles?

REPORT: CARB DISCOVERS MORE TECH

DESIGNED TO DETECT EMISSIONS TESTING

NOVEMBER 7, 2016

Read more: http://autoweek.com/article/vw-diesel-

scandal/more-defeat-devices-audi-

vehicles#ixzz4RyW47YNd

http://autoweek.com/article/vw-diesel-scandal/more-defeat-devices-audi-vehicles#ixzz4RyW47YNd

65

http://www.forbes.com/sites/bertels

chmitt/2016/11/06/carb-finds-new-

audi-defeat-device-german-paper-

digs-up-smoking-gun-

document/#52349eca1ce8

