
1

Performance

Improvement

Background reading:

The Practice of Programming (Kernighan & Pike) Chapter 7

Princeton University
Computer Science 217: Introduction to Programming Systems

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms (done)

• Modularity (done)

• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools <-- we are here

2

Case study: 25 most common words

Find the 25 most

common words in a text

file, print their

frequencies in

decreasing order

$ buzz < novel.txt
4503 the

4243 to

3726 of

3654 and

2225 her

2070 i

2012 a

1937 in

1847 was

1710 she

1594 that

1547 it

1450 not

1427 you

1339 he

1271 his

1260 be

1192 as

1177 had

1098 with

1085 for

1007 but

885 is

847 have

800 at

No googling

for this trivia

question:

What work of

literature is

this?

Hint:

Project Gutenberg’s

#1-downloaded book

Hint 2 Hint 2

A program, “buzz.c”

/* Enter every word from stdin into a
SymTable, bound to its # of occurrences */
void readInput (SymTable_T table);

/* Make an array of (word, #occ), from
the contents of the SymTable */

struct counts *extractCounts(

SymTable_T table);

/* Sort the “counts” array in descending
order, and print the first 25 entries */
void analyzeData(struct counts *p);

/* The main program */
int main(void) {

SymTable_T table = SymTable_new();

readInput(table);

analyzeData(extractCounts(table));

return 0;

}

Reading the input

enum {MAX_LEN = 1000};

int readWord(char *buffer, int buflen) {

int c;

/* Skip non-alphabetic characters */
do {

c = getchar();

if (c==EOF) return 0;

} while (!isalpha(c));

buffer[0]='\0';

/* Process alphabetic characters */
while (isalpha(c)) {

if (strlen(buffer)<buflen-1) {

buffer[strlen(buffer)+1]='\0';

buffer[strlen(buffer)]=tolower(c);

}

c=getchar();

}

buffer[strlen(buffer)]='\0';

return 1;

}

/* Enter every word from stdin into a
SymTable, bound to its # of occurrences */

void readInput (SymTable_T table) {

char word[MAX_LEN+1];

while (readWord(word, MAX_LEN+1)) {

int *p = (int*)SymTable_get(

table, word);

if (p == NULL) {

p = (int*)malloc(sizeof(int));

*p = 0;

SymTable_put(table, word, p);

}

(*p)++;

}

}

Extracting the counts

struct word_and_count {

const char *word;

int count;

};

struct counts {

int filled;

int max;

struct word_and_count *array;

};

struct counts *makeCounts(int max) {

struct counts *p =

(struct counts *) malloc (sizeof (*p));

assert(p);

p->filled=0;

p->max=max;

p->array = (struct word_and_count*)

malloc (max * sizeof (struct word_and_count));

assert (p->array);

return p;

}

void handleBinding(

const char *key,

void *value, void *extra) {

struct counts *c = (struct counts *) extra;

assert (c->filled < c->max);

c->array[c->filled].word = key;

c->array[c->filled].count = *((int*)value);

c->filled += 1;

}

/* Make an array of (word, #occ), from
the contents of the SymTable */

struct counts *extractCounts(

SymTable_T table) {

struct counts *p = makeCounts(

SymTable_getLength(table));

SymTable_map(table,

handleBinding,

(void*)p);

return p;

}

Sorting and printing the counts

void swap (struct word_and_count *a,

struct word_and_count *b) {

struct word_and_count t;

t=*a; *a=*b; *b=t;

}

void sortCounts (struct counts *counts) {

/* insertion sort */
int i,j;

int n = counts->filled;

struct word_and_count *a = counts->array;

for (i=1; i<n; i++) {

for (j=i;

j>0 && a[j-1].count<a[j].count;

j--)

swap(a+j, a+j-1);

}

}

/* Sort the “counts” array in descending
order, and print the first 25 entries */

void analyzeData(struct counts *p) {

int i, n;

assert (p->filled == p->max);

sortCounts(p);

n = 25<p->max ? 25 : p->max;

for (i=0; i<n; i++)

printf("%10d %s\n",

p->array[i].count,

p->array[i].word);

}

8

Timing a Program

Run a tool to time program execution
• E.g., Unix time command

Output:
• Real (or “elapsed”): Wall-clock time between program invocation and termination

• User: CPU time spent executing the program

• System: CPU time spent within the OS on the program’s behalf

In summary: takes 3.58 seconds to process 703,549

characters of input. That’s really slow!

(especially if we want to process a whole library of books)

$ time ./buzz < corpus.txt > output.txt

3.58user 0.00system 0:03.59elapsed 99%CPU

What should you do?

The COS 226 answer:

Use asymptotically efficient

algorithms and data

structures everywhere.

WRONG!

(and, to be fair, that was a

caricature of the COS 226

answer)

What should you do?

Caricature of the

COS 226 answer:

Use asymptotically efficient

algorithms and data

structures everywhere.

Most parts of your program

won’t run on “big data!”

Simplicity, maintainability,

correctness, easy algorithms

and data structures are most

important.

Words of the sages

“Optimization hinders evolution.”

-- Alan Perlis

“Premature optimization is the root of all evil.”

-- Donald Knuth

“Rules of Optimization:
• Rule 1: Don't do it.

• Rule 2 (for experts only): Don't do it yet.”

-- Michael A. Jackson*

*The MIT professor, not the pop singer. 11

12

When to Improve Performance

“The first principle of optimization is

don’t.
Is the program good enough already?
Knowing how a program will be used

and the environment it runs in,
is there any benefit to making it faster?”

-- Kernighan & Pike

13

When to Improve Performance

“The first principle of optimization is

don’t.
Is the program good enough already?
Knowing how a program will be used

and the environment it runs in,
is there any benefit to making it faster?”

-- Kernighan & Pike

The only reason we’re even

allowed to be here (as good

software engineers) is because we

did the performance measurement

(700k characters in 3.58 seconds)

and found it unacceptable.

14

Goals of this Lecture

Help you learn about:
• Techniques for improving program performance

• How to make your programs run faster and/or use less memory

• The oprofile execution profiler

Why?
• In a large program, typically a small fragment of the code consumes

most of the CPU time and/or memory

• A power programmer knows how to identify such code fragments

• A power programmer knows techniques for improving the

performance of such code fragments

15

Performance Improvement Pros

Techniques described in this lecture can yield answers to

questions such as:
• How slow is my program?

• Where is my program slow?

• Why is my program slow?

• How can I make my program run faster?

• How can I make my program use less memory?

16

Timing Parts of a Program

Call a function to compute wall-clock time consumed
• E.g., Unix gettimeofday() function (time since Jan 1, 1970)

#include <sys/time.h>

struct timeval startTime;

struct timeval endTime;

double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);

<execute some code here>

gettimeofday(&endTime, NULL);

wallClockSecondsConsumed =

endTime.tv_sec - startTime.tv_sec +

1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

17

Timing Parts of a Program (cont.)

Call a function to compute CPU time consumed
• E.g. clock() function

#include <time.h>

clock_t startClock;

clock_t endClock;

double cpuSecondsConsumed;

startClock = clock();

<execute some code here>

endClock = clock();

cpuSecondsConsumed =

((double)(endClock - startClock)) / CLOCKS_PER_SEC;

18

Identifying Hot Spots

Gather statistics about your program’s execution
• How much time did execution of a particular function take?

• How many times was a particular function called?

• How many times was a particular line of code executed?

• Which lines of code used the most time?

• Etc.

How? Use an execution profiler
• Example: gprof (GNU Performance Profiler)

• Reports how many seconds spent in each of your programs’

functions, to the nearest millisecond.

19

Identifying Hot Spots

Gather statistics about your program’s execution
• How much time did execution of a particular function take?

• How many times was a particular function called?

• How many times was a particular line of code executed?

• Which lines of code used the most time?

• Etc.

How? Use an execution profiler
• Example: gprof (GNU Performance Profiler)

• Reports how many seconds spent in each of your programs’

functions, to the nearest millisecond.

Milliseconds? Really?
My whole program runs in a

couple of milliseconds!
What century do you think

we’re in?

The 1980s just called,

they want their profiler back . . .

For some reason, between 1982 and 2016 while computers got

1000x faster, nobody thought to tweak gprof to make it report

to the nearest microsecond instead of millisecond.

The 1980s just called,

they want their profiler back . . .

So we will use oprofile, a 21st-century profiling tool.

But gprof is still available and convenient:

what I show here (with oprofile) can be done with gprof.

Read the man pages:

$ man gprof

$ man oprofile

22

Using oprofile

Step 1: Compile the program with –g and –O2

gcc –g –O2 –c buzz.c; gcc buzz.o symtablelist.o –o buzz1

-g adds “symbol table” to buzz.o (and the eventual executable)

-O2 says “compile with optimizations.” If you’re worried enough about performance to

want to profile, then measure the compiled-for-speed version of the program.

Step 2: Run the program

operf ./buzz1 < corpus.txt >output

• Creates subdirectory oprofile_data containing statistics

Step 3: Create a report

opreport -l -t 1 > myreport

• Uses oprofile_data and buzz’s symbol table to create textual report

Step 4: Examine the report

cat myreport

I’ve left out the here; otherwise it would leave out

any line whose % is less than 1

-t 1

23

The oprofile report

samples % image name app name symbol name

20871 75.8807 libc-2.17.so buzz1 __strcmp_sse42

5732 20.8398 buzz1 buzz1 SymTable_get

257 0.9344 buzz1 buzz1 SymTable_put

256 0.9307 buzz1 buzz1 sortCounts

105 0.3817 buzz1 buzz1 readWord

92 0.3345 no-vmlinux buzz1 /no-vmlinux

75 0.2727 libc-2.17.so buzz1 fgetc

73 0.2654 libc-2.17.so buzz1 __strlen_sse2_pminub

10 0.0364 buzz1 buzz1 readInput

9 0.0327 libc-2.17.so buzz1 __ctype_tolower_loc

8 0.0291 libc-2.17.so buzz1 _int_malloc

3 0.0109 libc-2.17.so buzz1 __ctype_b_loc

3 0.0109 libc-2.17.so buzz1 malloc

2 0.0073 libc-2.17.so buzz1 __strcpy_sse2_unaligned

1 0.0036 buzz1 buzz1 SymTable_map

1 0.0036 ld-2.17.so time bsearch

1 0.0036 libc-2.17.so buzz1 malloc_consolidate

1 0.0036 libc-2.17.so buzz1 strcpy

1 0.0036 libc-2.17.so time __write_nocancel

Name of

the function

Name of

the executable

program

Name of

the running

program

Name of

the binary

executable

% of execution

time spent in

this function

24

What do we learn from this?

samples % image name app name symbol name

20871 75.8807 libc-2.17.so buzz1 __strcmp_sse42

5732 20.8398 buzz1 buzz1 SymTable_get

257 0.9344 buzz1 buzz1 SymTable_put

256 0.9307 buzz1 buzz1 sortCounts

105 0.3817 buzz1 buzz1 readWord

92 0.3345 no-vmlinux buzz1 /no-vmlinux

75 0.2727 libc-2.17.so buzz1 fgetc

73 0.2654 libc-2.17.so buzz1 __strlen_sse2_pminub

10 0.0364 buzz1 buzz1 readInput

9 0.0327 libc-2.17.so buzz1 __ctype_tolower_loc

8 0.0291 libc-2.17.so buzz1 _int_malloc

3 0.0109 libc-2.17.so buzz1 __ctype_b_loc

3 0.0109 libc-2.17.so buzz1 malloc

2 0.0073 libc-2.17.so buzz1 __strcpy_sse2_unaligned

1 0.0036 buzz1 buzz1 SymTable_map

1 0.0036 ld-2.17.so time bsearch

1 0.0036 libc-2.17.so buzz1 malloc_consolidate

1 0.0036 libc-2.17.so buzz1 strcpy

1 0.0036 libc-2.17.so time __write_nocancel

96% of execution time

is in strcmp() and in

SymTable_get()

Who is calling strcmp? Nothing in buzz.c . . .

It’s the symtablelist.c implementation of SymTable_get . . .

25

Use better algorithms and data structures

Improve the “buzz” program by using

symtablehash.c instead of symtablelist.c

gcc –g –O2 –c buzz.c; gcc buzz.o symtablelist.o –o buzz1

gcc –g –O2 –c buzz.c; gcc buzz.o symtablehash.o –o buzz2

Result: execution time decreases from

3.58 seconds to 0.06 seconds

The use of insertion sort instead of quicksort doesn’t actually seem to be

a problem! That’s what we learned from doing the oprofile. This is

engineering, not just hacking.

26

What if 0.06 seconds isn’t fast enough?

samples % image name app name symbol name

221 39.6057 buzz2 buzz2 sortCounts

66 11.8280 buzz2 buzz2 SymTable_get

66 11.8280 libc-2.17.so buzz2 __strlen_sse2_pminub

50 8.9606 buzz2 buzz2 SymTable_hash

45 8.0645 libc-2.17.so buzz2 fgetc

37 6.6308 buzz2 buzz2 readWord

20 3.5842 libc-2.17.so buzz2 __strcmp_sse42

20 3.5842 no-vmlinux buzz2 /no-vmlinux

40% of execution time in sortCounts. Let’s make it faster.

operf ./buzz2 < corpus.txt >output

opreport -l -t 1 > myreport

Line-by-line view in oprofile

operf ./buzz2 <corpus.txt >output2

opannotate -s > annotated-source2

:/*----------- Sort the counts ----------------*/

:

:void swap (struct word_and_count *a,

: struct word_and_count *b) {

: struct word_and_count t;

87 21.42 : t=*a; *a=*b; *b=t;

:}

:

:void sortCounts (struct counts *counts) {

: /* insertion sort */

: int i,j;

: int n = counts->filled;

: struct word_and_count *a = counts->array;

: for (i=1; i<n; i++) {

81 19.95 : for (j=i; j>0 && a[j-1].count<a[j].count; j--)

: swap(a+j, a+j-1);

: }

:}

The file annotated-source2:

source lines

Insertion Sort Quicksort

void swap (struct word_and_count *a,

struct word_and_count *b) {

struct word_and_count t;

t=*a; *a=*b; *b=t;

}

void sortCounts (struct counts *counts) {

/* insertion sort */
int i,j;

int n = counts->filled;

struct word_and_count *a = counts->array;

for (i=1; i<n; i++) {

for (j=i;

j>0 && a[j-1].count<a[j].count;

j--)

swap(a+j, a+j-1);

}

}

int compare_count(

const void *p, const void *q) {

return

((struct word_and_count *)q)->count

− ((struct word_and_count *)p)->count;

}

void sortCounts (struct counts *counts) {

qsort(counts->array,

counts->filled,

sizeof(struct word_and_count),

compare_count);

}

Use the qsort function

from the standard library
(covered in precept last week)

29

Use quicksort instead of insertion sort

Result: execution time decreases from

0.06 seconds to 0.04 seconds

We could have predicted this! If 40% of the time was in the sort function,

and we practically eliminate all of that, then it’ll be 40% faster.

Is that fast enough? Well, yes.

But just for fun, let’s run the profiler again.

30

What if 0.04 seconds isn’t fast enough?

samples % image name app name symbol name

73 27.3408 libc-2.17.so buzz3 __strlen_sse2_pminub

48 17.9775 buzz3 buzz3 readWord

36 13.4831 buzz3 buzz3 SymTable_hash

33 12.3596 libc-2.17.so buzz3 fgetc

27 10.1124 buzz3 buzz3 SymTable_get

15 5.6180 no-vmlinux buzz3 /no-vmlinux

11 4.1199 libc-2.17.so buzz3 __strcmp_sse42

4 1.4981 libc-2.17.so buzz3 _int_malloc

3 1.1236 libc-2.17.so buzz3 msort_with_t

27% of execution time in strlen(). Who’s calling strlen() ?

Reading the input

enum {MAX_LEN = 1000};

int readWord(char *buffer, int buflen) {

int c;

/* Skip non-alphabetic characters */
do {

c = getchar();

if (c==EOF) return 0;

} while (!isalpha(c));

buffer[0]='\0';

/* Process alphabetic characters */
while (isalpha(c)) {

if (strlen(buffer)<buflen-1) {

buffer[strlen(buffer)+1]='\0';

buffer[strlen(buffer)]=tolower(c);

}

c=getchar();

}

buffer[strlen(buffer)]='\0';

return 1;

}

This is just silly. We could

keep track of the length of

the buffer in an integer

variable, instead of

recomputing each time.

How much faster would the program

become?

27% faster; from 0.04 sec to 0.03 sec.

Is it worth it? Perhaps, especially if

the program doesn’t become harder to

read and maintain.

32

Enabling Speed Optimization

Enable compiler speed optimization

gcc217 –Ox mysort.c –o mysort

• Compiler spends more time compiling your code so…

• Your code spends less time executing

• x can be:

• 0: don’t optimize

• 1: optimize (this is the default)

• 2: optimize more

• 3: optimize across .c files

• See “man gcc” for details

Beware: Speed optimization can affect debugging
e.g. Optimization eliminates variable ⇒ GDB cannot print value of variable

33

Summary

Steps to improve execution (time) efficiency:
• Do timing studies

• Identify hot spots (using oprofile)

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Techniques to improve memory (space) efficiency:
• Profile using valgrind

• Use a more efficient data structure (based on evidence from profile)

• Or (in some cases) recompute instead of storing

And, most importantly…

34

Clarity supersedes performance

Don’t improve

performance unless

you must!!!

