
Number Systems

and

Number Representation

1

Princeton University
Computer Science 217: Introduction to Programming Systems



2

For Your Amusement

Question:  Why do computer programmers confuse

Christmas and Halloween?

Answer:  Because 25 Dec = 31 Oct

-- http://www.electronicsweekly.com
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Goals of this Lecture

Help you learn (or refresh your memory) about:
• The binary, hexadecimal, and octal number systems

• Finite representation of unsigned integers

• Finite representation of signed integers

• Finite representation of rational numbers (if time)

Why?
• A power programmer must know number systems and data 

representation to fully understand C’s primitive data types

Primitive values and

the operations on them



Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)
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The Decimal Number System

Name
• “decem” (Latin) ⇒ ten

Characteristics
• Ten symbols

• 0 1 2 3 4 5 6 7 8 9

• Positional

• 2945 ≠ 2495

• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system
Why?



The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as 

on or off, true or false, molten or frozen, presence or absence of a 

signal. From Late Latin bīnārius (“consisting of two”).

Characteristics
• Two symbols

• 0 1

• Positional

• 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a binary digit

• Byte: (typically) 8 bits
6

Why?



Decimal-Binary Equivalence

7

Decimal Binary

0      0

1      1

2     10

3     11

4    100

5    101

6    110

7    111

8   1000

9   1001

10   1010

11   1011

12   1100

13   1101

14   1110

15   1111

Decimal Binary

16  10000

17  10001

18  10010

19  10011

20  10100

21  10101

22  10110

23  10111

24  11000

25  11001

26  11010

27  11011

28  11100

29  11101

30  11110

31  11111

...    ...



Decimal-Binary Conversion

Binary to decimal: expand using positional notation
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100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)

=    32  +  0   +  0   +  4  +  0   +  1

=    37



Decimal-Binary Conversion

Binary to decimal: expand using positional notation
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100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)

=    32  +  0   +  0   +  4  +  0   +  1

=    37

Integer

Integer

These are integers
They exist as their pure selves

no matter how we might choose

to represent them with our

fingers or toes 



Integer-Binary Conversion

Integer to binary: do the reverse
• Determine largest power of 2 ≤ number; write template

• Fill in template
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37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)

-32

5

-4

1                   100101B
-1

0



Integer-Binary Conversion

Integer to binary shortcut
• Repeatedly divide by 2, consider remainder
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37 / 2 = 18 R 1

18 / 2 =  9 R 0

9 / 2 =  4 R 1

4 / 2 =  2 R 0

2 / 2 =  1 R 0

1 / 2 =  0 R 1

Read from bottom

to top: 100101B



The Hexadecimal Number System

Name
• “hexa” (Greek) ⇒ six

• “decem” (Latin) ⇒ ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Positional

• A13DH ≠ 3DA1H

Computer programmers often use the hexadecimal number 

system
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Why?



Decimal-Hexadecimal Equivalence
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Decimal Hex

0   0

1   1

2   2

3   3

4   4

5   5

6   6

7   7

8   8

9   9

10   A

11   B

12   C

13   D

14   E

15   F

Decimal Hex

16  10

17  11

18  12

19  13

20  14

21  15

22  16

23  17

24  18

25  19

26  1A

27  1B

28  1C

29  1D

30  1E

31  1F

Decimal Hex

32  20

33  21

34  22

35  23

36  24

37  25

38  26

39  27

40  28

41  29

42  2A

43  2B

44  2C

45  2D

46  2E

47  2F

...  ...



Integer-Hexadecimal Conversion

Hexadecimal to integer: expand using positional notation

Integer to hexadecimal: use the shortcut
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25H = (2*161) + (5*160)

=  32   +    5

=  37

37 / 16 = 2 R 5

2 / 16 = 0 R 2

Read from bottom

to top: 25H



Binary-Hexadecimal Conversion

Observation: 161 = 24

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

Hexadecimal to binary
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1010000100111101B
A 1   3 DH

Digit count in binary number

not a multiple of 4 ⇒
pad with zeros on left

A 1   3 DH
1010000100111101B

Discard leading zeros

from binary number if

appropriate

Is it clear why programmers 

often use hexadecimal?



The Octal Number System

Name
• “octo” (Latin) ⇒ eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7

• Positional

• 1743O ≠ 7314O

Computer programmers often use the octal number system

(So does Mickey Mouse!)
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Why?



Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)
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Unsigned Data Types: Java vs. C

Java has type:
• int

• Can represent signed integers

C has type:
• signed int

• Can represent signed integers

• int

• Same as signed int

• unsigned int

• Can represent only unsigned integers

To understand C, must consider representation of both 

unsigned and signed integers
18



Representing Unsigned Integers

Mathematics
• Range is 0 to ∞

Computer programming
• Range limited by computer’s word size

• Word size is n bits ⇒ range is 0 to 2n – 1

• Exceed range ⇒ overflow

CourseLab computers
• n = 64, so range is 0 to 264 – 1 (huge!)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = 64, word size = n
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Representing Unsigned Integers

On pretend computer
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Unsigned

Integer Rep

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

8   1000

9   1001

10   1010

11   1011

12   1100

13   1101

14   1110

15   1111



Adding/subtracting binary numbers
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0011

1010

Addition

1010

0111

0011

1010

SubtractionSubtraction



Adding Unsigned Integers

Addition

Results are mod 24

22

1

7      0111B
+ 10    + 1010B

-- ----

1     0001B

1

3      0011B
+ 10    + 1010B
-- ----

13   1101B

Start at right column

Proceed leftward

Carry 1 when necessary

Beware of overflow

How would you

detect overflow

programmatically?



Subtracting Unsigned Integers

Subtraction

Results are mod 24

23

1

3  0011B
- 10    - 1010B

-- ----

9 1001B

111

10      1010B
- 7    - 0111B

-- ----

3      0011B

Start at right column

Proceed leftward

Borrow when necessary

Beware of overflow

How would you

detect overflow

programmatically?



Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

24

10 >> 1 ⇒ 5

10 >> 2 ⇒ 2

5 << 1 ⇒ 10

3 << 2 ⇒ 12

What is the effect

arithmetically? 
(No fair looking ahead)

What is the effect

arithmetically? 
(No fair looking ahead)

1010B 0101B

1010B 0010B

0101B 1010B

0011B 1100B



Other Operations on Unsigned Ints

Bitwise NOT (~ in C)
• Flip each bit

Bitwise AND (& in C)
• Logical AND corresponding bits
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~10 ⇒ 5

10      1010B
& 7    & 0111B
-- ----

2      0010B

Useful for setting

selected bits to 0

1010B 0101B



Other Operations on Unsigned Ints

Bitwise OR: (| in C)
• Logical OR corresponding bits

Bitwise exclusive OR (^ in C)
• Logical exclusive OR corresponding bits
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10      1010B
|  1    | 0001B
-- ----

11      1011B

Useful for setting

selected bits to 1

10      1010B
^ 10    ^ 1010B
-- ----

0      0000B

x ^ x sets

all bits to 0



Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y 

• 3*4 = 3*22 = 3<<2 ⇒ 12

x / 2y == x >> y

• 13/4 = 13/22 = 13>>2 ⇒ 3

x % 2y == x & (2y-1)

• 13%4 = 13%22 = 13&(22-1)

= 13&3 ⇒ 1

27

Fast way to multiply

by a power of 2

Fast way to divide

by a power of 2

Fast way to mod

by a power of 2

13      1101B
& 3    & 0011B
-- ----

1      0001B
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Aside: Example C Program

#include <stdio.h>

#include <stdlib.h>

int main(void)

{  unsigned int n;

unsigned int count;

printf("Enter an unsigned integer: ");

if (scanf("%u", &n) != 1)

{  fprintf(stderr, "Error: Expect unsigned int.\n");

exit(EXIT_FAILURE);

}

for (count = 0; n > 0; n = n >> 1)

count += (n & 1);

printf("%u\n", count);

return 0;

}

What does it 

write?

How could this be 

expressed more 

succinctly?
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Aside from the aside…

for (count = 0; n > 0; n = n >> 1)

count += (n & 1);

count = 0;

for ( ; n > 0; n = n >> 1)

count += (n & 1);

Personally, I wouldn’t put the (count=0) in the for(;;) initializer,

because it’s not really part of the loop iterator.  In this case,

the iterator is n, which (in this case) happens to be already

initialized.

So it’s perhaps more straightforward to write,



Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)
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Signed Magnitude

31

Integer Rep

-7   1111

-6   1110

-5   1101

-4   1100

-3   1011

-2   1010

-1   1001

-0   1000

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

Definition

High-order bit indicates sign

0 ⇒ positive

1 ⇒ negative

Remaining bits indicate magnitude
1101B = -101B = -5

0101B =  101B =  5



Signed Magnitude (cont.)
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Integer Rep

-7   1111

-6   1110

-5   1101

-4   1100

-3   1011

-2   1010

-1   1001

-0   1000

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

Computing negative

neg(x) = flip high order bit of x
neg(0101B) = 1101B
neg(1101B) = 0101B

Pros and cons

+ easy for people to understand

+ symmetric

- two representations of zero

- can’t use the same “add” algorithm for 

both signed and unsigned numbers



Ones’ Complement
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Integer Rep

-7   1000

-6   1001

-5   1010

-4   1011

-3   1100

-2   1101

-1   1110

-0   1111

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

Definition

High-order bit has weight -7
1010B = (1*-7)+(0*4)+(1*2)+(0*1)

= -5

0010B = (0*-7)+(0*4)+(1*2)+(0*1)

= 2



Ones’ Complement (cont.)

34

Integer Rep

-7   1000

-6   1001

-5   1010

-4   1011

-3   1100

-2   1101

-1   1110

-0   1111

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

Computing negative

neg(x) = ~x
neg(0101B) = 1010B
neg(1010B) = 0101B

Pros and cons

+ symmetric

− two reps of zero

− can’t use the same “add” algorithm for both   signed 

and unsigned numbers

Computing negative (alternative)

neg(x) = 1111B - x
neg(0101B) = 1111B – 0101B

= 1010B
neg(1010B) = 1111B – 1010B

= 0101B



Two’s Complement
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Integer Rep

-8   1000

-7   1001

-6   1010

-5   1011

-4   1100

-3   1101

-2   1110

-1   1111

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

Definition

High-order bit has weight -8
1010B = (1*-8)+(0*4)+(1*2)+(0*1)

= -6

0010B = (0*-8)+(0*4)+(1*2)+(0*1)

= 2



Two’s Complement (cont.)
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Integer Rep

-8   1000

-7   1001

-6   1010

-5   1011

-4   1100

-3   1101

-2   1110

-1   1111

0   0000

1   0001

2   0010

3   0011

4   0100

5   0101

6   0110

7   0111

Computing negative

neg(x) = ~x + 1

neg(x) = onescomp(x) + 1
neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons

- not symmetric

+ one representation of zero

+ same algorithm adds unsigned numbers

or signed numbers



Two’s Complement (cont.)

Almost all computers use two’s complement to represent 

signed integers

Why?
• Arithmetic is easy

• Will become clear soon

Hereafter, assume two’s complement representation of 

signed integers
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Adding Signed Integers
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11

3      0011B
+ 3    + 0011B
-- ----

6      0110B

111

7      0111B
+ 1    + 0001B
-- ----

-8 1000B

pos + pos pos + pos (overflow)

1111

3      0011B
+ -1    + 1111B

-- ----

2     10010B

pos + neg

11

-3      1101B
+ -2    + 1110B

-- ----

-5     11011B

neg + neg
1 1

-6      1010B
+ -5    + 1011B

-- ----

5     10101B

neg + neg (overflow)

How would you

detect overflow

programmatically?



Subtracting Signed Integers
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1

22

3      0011B
- 4    - 0100B
-- ----

-1      1111B

3      0011B
+ -4    + 1100B

-- ----

-1      1111B

-5      1011B
- 2    - 0010B
-- ----

-7      1001B

111 

-5      1011

+ -2    + 1110

-- ----

-7     11001

Perform subtraction

with borrows

Compute two’s comp

and addor



Negating Signed Ints: Math

Question: Why does two’s comp arithmetic work?

Answer:  [–b] mod 24 = [twoscomp(b)] mod 24

See Bryant & O’Hallaron book for much more info
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[–b] mod 24

= [24 – b] mod 24

= [24 – 1 - b + 1] mod 24

= [(24 – 1 - b) + 1] mod 24

= [onescomp(b) + 1] mod 24

= [twoscomp(b)] mod 24



Subtracting Signed Ints: Math

And so:
[a – b] mod 24 = [a + twoscomp(b)] mod 24

See Bryant & O’Hallaron book for much more info
41

[a – b] mod 24

= [a + 24 – b] mod 24

= [a + 24 – 1 – b + 1] mod 24

= [a + (24 - 1 – b) + 1] mod 24

= [a + onescomp(b) + 1] mod 24

= [a + twoscomp(b)] mod 24



Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

Bitwise arithmetic right shift: fill on left with sign bit

Results are mod 24

42

6 >> 1 ⇒ 3

-6 >> 1 ⇒ -3

3 << 1 ⇒ 6

-3 << 1 ⇒ -6

What is the effect

arithmetically?

What is the effect

arithmetically?

0011B 0110B

1101B -1010B

0110B 0011B

1010B 1101B



Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical or arithmetic
• Not specified by C90 standard

• Compiler designer decides

Best to avoid shifting signed integers

(if you must shift signed integers, make sure you’re on a 2’s complement 

machine, and do a bitwise-and after shifting)

(Java does this better, with two operators:  >>  >>>   )
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6 >> 1 ⇒ 3

-6 >> 1 ⇒ 5

What is the effect

arithmetically???

0110B 0011B

1010B 0101B



Shifting Signed Integers (cont.)

(if you must shift signed integers, make sure you’re on a 2’s complement 

machine, and do a bitwise-and after shifting)

44

Is it after 1980?
OK, then we’re surely

two’s complement



Other Operations on Signed Ints

Bitwise NOT (~ in C)
• Same as with unsigned ints

Bitwise AND (& in C)
• Same as with unsigned ints

Bitwise OR: (| in C)
• Same as with unsigned ints

Bitwise exclusive OR (^ in C)
• Same as with unsigned ints

Best to avoid with signed integers

45



Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)
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Rational Numbers

Mathematics
• A rational number is one that can be expressed

as the ratio of two integers

• Infinite range and precision

Computer science
• Finite range and precision

• Approximate using floating point number

• Binary point “floats” across bits

47



IEEE Floating Point Representation

Common finite representation: IEEE floating point
• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0⇒positive, 1⇒negative)

• 8 bits: exponent + 127

• 23 bits: binary fraction of the form 1.ddddddddddddddddddddddd

Using 64 bits (type double in C):
• 1 bit: sign (0⇒positive, 1⇒negative)

• 11 bits: exponent + 1023

• 52 bits: binary fraction of the form 

1.dddddddddddddddddddddddddddddddddddddddddddddddddddd
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Floating Point Example

Sign (1 bit):
• 1 ⇒ negative

Exponent (8 bits): 
• 10000011B = 131

• 131 – 127 = 4

Fraction (23 bits):     also called “mantissa”

• 1.10110110000000000000000B

• 1 + (1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+(1*2-

6)+(1*2-7) = 1.7109375

Number:
• -1.7109375 * 24 = -27.375

49

11000001110110110000000000000000

32-bit representation



When was floating-point invented?

mantissa
noun
decimal part of a logarithm, 1865, from Latin mantisa “a worthless 
addition, makeweight,” perhaps a Gaulish word introduced into Latin via 
Etruscan (cf. Old Irish meit, Welsh maint "size").

Answer:  long before computers!



Floating Point Warning

Decimal number system can 

represent only some rational

numbers with finite digit count
• Example: 1/3

Binary number system can

represent only some rational

numbers with finite digit count
• Example: 1/5

Beware of roundoff error
• Error resulting from inexact

representation

• Can accumulate

51

Decimal Rational

Approx Value

.3       3/10

.33      33/100

.333     333/1000

...

Binary Rational

Approx Value

0.0        0/2

0.01       1/4

0.010      2/8

0.0011     3/16

0.00110    6/32

0.001101   13/64

0.0011010  26/128

0.00110011 51/256

...



Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers

Essential for proper understanding of
• C primitive data types

• Assembly language

• Machine language

52


