
Number Systems

and

Number Representation

1

Princeton University
Computer Science 217: Introduction to Programming Systems

2

For Your Amusement

Question: Why do computer programmers confuse

Christmas and Halloween?

Answer: Because 25 Dec = 31 Oct

-- http://www.electronicsweekly.com

3

Goals of this Lecture

Help you learn (or refresh your memory) about:
• The binary, hexadecimal, and octal number systems

• Finite representation of unsigned integers

• Finite representation of signed integers

• Finite representation of rational numbers (if time)

Why?
• A power programmer must know number systems and data

representation to fully understand C’s primitive data types

Primitive values and

the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

4

5

The Decimal Number System

Name
• “decem” (Latin) ⇒ ten

Characteristics
• Ten symbols

• 0 1 2 3 4 5 6 7 8 9

• Positional

• 2945 ≠ 2495

• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system
Why?

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as

on or off, true or false, molten or frozen, presence or absence of a

signal. From Late Latin bīnārius (“consisting of two”).

Characteristics
• Two symbols

• 0 1

• Positional

• 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a binary digit

• Byte: (typically) 8 bits
6

Why?

Decimal-Binary Equivalence

7

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Decimal Binary

16 10000

17 10001

18 10010

19 10011

20 10100

21 10101

22 10110

23 10111

24 11000

25 11001

26 11010

27 11011

28 11100

29 11101

30 11110

31 11111

... ...

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

8

100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)

= 32 + 0 + 0 + 4 + 0 + 1

= 37

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

9

100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)

= 32 + 0 + 0 + 4 + 0 + 1

= 37

Integer

Integer

These are integers
They exist as their pure selves

no matter how we might choose

to represent them with our

fingers or toes

Integer-Binary Conversion

Integer to binary: do the reverse
• Determine largest power of 2 ≤ number; write template

• Fill in template

10

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)

-32

5

-4

1 100101B
-1

0

Integer-Binary Conversion

Integer to binary shortcut
• Repeatedly divide by 2, consider remainder

11

37 / 2 = 18 R 1

18 / 2 = 9 R 0

9 / 2 = 4 R 1

4 / 2 = 2 R 0

2 / 2 = 1 R 0

1 / 2 = 0 R 1

Read from bottom

to top: 100101B

The Hexadecimal Number System

Name
• “hexa” (Greek) ⇒ six

• “decem” (Latin) ⇒ ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Positional

• A13DH ≠ 3DA1H

Computer programmers often use the hexadecimal number

system

12

Why?

Decimal-Hexadecimal Equivalence

13

Decimal Hex

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

Decimal Hex

16 10

17 11

18 12

19 13

20 14

21 15

22 16

23 17

24 18

25 19

26 1A

27 1B

28 1C

29 1D

30 1E

31 1F

Decimal Hex

32 20

33 21

34 22

35 23

36 24

37 25

38 26

39 27

40 28

41 29

42 2A

43 2B

44 2C

45 2D

46 2E

47 2F

... ...

Integer-Hexadecimal Conversion

Hexadecimal to integer: expand using positional notation

Integer to hexadecimal: use the shortcut

14

25H = (2*161) + (5*160)

= 32 + 5

= 37

37 / 16 = 2 R 5

2 / 16 = 0 R 2

Read from bottom

to top: 25H

Binary-Hexadecimal Conversion

Observation: 161 = 24

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

Hexadecimal to binary

15

1010000100111101B
A 1 3 DH

Digit count in binary number

not a multiple of 4 ⇒
pad with zeros on left

A 1 3 DH
1010000100111101B

Discard leading zeros

from binary number if

appropriate

Is it clear why programmers

often use hexadecimal?

The Octal Number System

Name
• “octo” (Latin) ⇒ eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7

• Positional

• 1743O ≠ 7314O

Computer programmers often use the octal number system

(So does Mickey Mouse!)

16

Why?

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

17

Unsigned Data Types: Java vs. C

Java has type:
• int

• Can represent signed integers

C has type:
• signed int

• Can represent signed integers

• int

• Same as signed int

• unsigned int

• Can represent only unsigned integers

To understand C, must consider representation of both

unsigned and signed integers
18

Representing Unsigned Integers

Mathematics
• Range is 0 to ∞

Computer programming
• Range limited by computer’s word size

• Word size is n bits ⇒ range is 0 to 2n – 1

• Exceed range ⇒ overflow

CourseLab computers
• n = 64, so range is 0 to 264 – 1 (huge!)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = 64, word size = n

19

Representing Unsigned Integers

On pretend computer

20

Unsigned

Integer Rep

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Adding/subtracting binary numbers

21

0011

1010

Addition

1010

0111

0011

1010

SubtractionSubtraction

Adding Unsigned Integers

Addition

Results are mod 24

22

1

7 0111B
+ 10 + 1010B

-- ----

1 0001B

1

3 0011B
+ 10 + 1010B
-- ----

13 1101B

Start at right column

Proceed leftward

Carry 1 when necessary

Beware of overflow

How would you

detect overflow

programmatically?

Subtracting Unsigned Integers

Subtraction

Results are mod 24

23

1

3 0011B
- 10 - 1010B

-- ----

9 1001B

111

10 1010B
- 7 - 0111B

-- ----

3 0011B

Start at right column

Proceed leftward

Borrow when necessary

Beware of overflow

How would you

detect overflow

programmatically?

Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

24

10 >> 1 ⇒ 5

10 >> 2 ⇒ 2

5 << 1 ⇒ 10

3 << 2 ⇒ 12

What is the effect

arithmetically?
(No fair looking ahead)

What is the effect

arithmetically?
(No fair looking ahead)

1010B 0101B

1010B 0010B

0101B 1010B

0011B 1100B

Other Operations on Unsigned Ints

Bitwise NOT (~ in C)
• Flip each bit

Bitwise AND (& in C)
• Logical AND corresponding bits

25

~10 ⇒ 5

10 1010B
& 7 & 0111B
-- ----

2 0010B

Useful for setting

selected bits to 0

1010B 0101B

Other Operations on Unsigned Ints

Bitwise OR: (| in C)
• Logical OR corresponding bits

Bitwise exclusive OR (^ in C)
• Logical exclusive OR corresponding bits

26

10 1010B
| 1 | 0001B
-- ----

11 1011B

Useful for setting

selected bits to 1

10 1010B
^ 10 ^ 1010B
-- ----

0 0000B

x ^ x sets

all bits to 0

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y

• 3*4 = 3*22 = 3<<2 ⇒ 12

x / 2y == x >> y

• 13/4 = 13/22 = 13>>2 ⇒ 3

x % 2y == x & (2y-1)

• 13%4 = 13%22 = 13&(22-1)

= 13&3 ⇒ 1

27

Fast way to multiply

by a power of 2

Fast way to divide

by a power of 2

Fast way to mod

by a power of 2

13 1101B
& 3 & 0011B
-- ----

1 0001B

28

Aside: Example C Program

#include <stdio.h>

#include <stdlib.h>

int main(void)

{ unsigned int n;

unsigned int count;

printf("Enter an unsigned integer: ");

if (scanf("%u", &n) != 1)

{ fprintf(stderr, "Error: Expect unsigned int.\n");

exit(EXIT_FAILURE);

}

for (count = 0; n > 0; n = n >> 1)

count += (n & 1);

printf("%u\n", count);

return 0;

}

What does it

write?

How could this be

expressed more

succinctly?

29

Aside from the aside…

for (count = 0; n > 0; n = n >> 1)

count += (n & 1);

count = 0;

for (; n > 0; n = n >> 1)

count += (n & 1);

Personally, I wouldn’t put the (count=0) in the for(;;) initializer,

because it’s not really part of the loop iterator. In this case,

the iterator is n, which (in this case) happens to be already

initialized.

So it’s perhaps more straightforward to write,

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

30

Signed Magnitude

31

Integer Rep

-7 1111

-6 1110

-5 1101

-4 1100

-3 1011

-2 1010

-1 1001

-0 1000

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Definition

High-order bit indicates sign

0 ⇒ positive

1 ⇒ negative

Remaining bits indicate magnitude
1101B = -101B = -5

0101B = 101B = 5

Signed Magnitude (cont.)

32

Integer Rep

-7 1111

-6 1110

-5 1101

-4 1100

-3 1011

-2 1010

-1 1001

-0 1000

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Computing negative

neg(x) = flip high order bit of x
neg(0101B) = 1101B
neg(1101B) = 0101B

Pros and cons

+ easy for people to understand

+ symmetric

- two representations of zero

- can’t use the same “add” algorithm for

both signed and unsigned numbers

Ones’ Complement

33

Integer Rep

-7 1000

-6 1001

-5 1010

-4 1011

-3 1100

-2 1101

-1 1110

-0 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Definition

High-order bit has weight -7
1010B = (1*-7)+(0*4)+(1*2)+(0*1)

= -5

0010B = (0*-7)+(0*4)+(1*2)+(0*1)

= 2

Ones’ Complement (cont.)

34

Integer Rep

-7 1000

-6 1001

-5 1010

-4 1011

-3 1100

-2 1101

-1 1110

-0 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Computing negative

neg(x) = ~x
neg(0101B) = 1010B
neg(1010B) = 0101B

Pros and cons

+ symmetric

− two reps of zero

− can’t use the same “add” algorithm for both signed

and unsigned numbers

Computing negative (alternative)

neg(x) = 1111B - x
neg(0101B) = 1111B – 0101B

= 1010B
neg(1010B) = 1111B – 1010B

= 0101B

Two’s Complement

35

Integer Rep

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Definition

High-order bit has weight -8
1010B = (1*-8)+(0*4)+(1*2)+(0*1)

= -6

0010B = (0*-8)+(0*4)+(1*2)+(0*1)

= 2

Two’s Complement (cont.)

36

Integer Rep

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Computing negative

neg(x) = ~x + 1

neg(x) = onescomp(x) + 1
neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons

- not symmetric

+ one representation of zero

+ same algorithm adds unsigned numbers

or signed numbers

Two’s Complement (cont.)

Almost all computers use two’s complement to represent

signed integers

Why?
• Arithmetic is easy

• Will become clear soon

Hereafter, assume two’s complement representation of

signed integers

37

Adding Signed Integers

38

11

3 0011B
+ 3 + 0011B
-- ----

6 0110B

111

7 0111B
+ 1 + 0001B
-- ----

-8 1000B

pos + pos pos + pos (overflow)

1111

3 0011B
+ -1 + 1111B

-- ----

2 10010B

pos + neg

11

-3 1101B
+ -2 + 1110B

-- ----

-5 11011B

neg + neg
1 1

-6 1010B
+ -5 + 1011B

-- ----

5 10101B

neg + neg (overflow)

How would you

detect overflow

programmatically?

Subtracting Signed Integers

39

1

22

3 0011B
- 4 - 0100B
-- ----

-1 1111B

3 0011B
+ -4 + 1100B

-- ----

-1 1111B

-5 1011B
- 2 - 0010B
-- ----

-7 1001B

111

-5 1011

+ -2 + 1110

-- ----

-7 11001

Perform subtraction

with borrows

Compute two’s comp

and addor

Negating Signed Ints: Math

Question: Why does two’s comp arithmetic work?

Answer: [–b] mod 24 = [twoscomp(b)] mod 24

See Bryant & O’Hallaron book for much more info

40

[–b] mod 24

= [24 – b] mod 24

= [24 – 1 - b + 1] mod 24

= [(24 – 1 - b) + 1] mod 24

= [onescomp(b) + 1] mod 24

= [twoscomp(b)] mod 24

Subtracting Signed Ints: Math

And so:
[a – b] mod 24 = [a + twoscomp(b)] mod 24

See Bryant & O’Hallaron book for much more info
41

[a – b] mod 24

= [a + 24 – b] mod 24

= [a + 24 – 1 – b + 1] mod 24

= [a + (24 - 1 – b) + 1] mod 24

= [a + onescomp(b) + 1] mod 24

= [a + twoscomp(b)] mod 24

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

Bitwise arithmetic right shift: fill on left with sign bit

Results are mod 24

42

6 >> 1 ⇒ 3

-6 >> 1 ⇒ -3

3 << 1 ⇒ 6

-3 << 1 ⇒ -6

What is the effect

arithmetically?

What is the effect

arithmetically?

0011B 0110B

1101B -1010B

0110B 0011B

1010B 1101B

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical or arithmetic
• Not specified by C90 standard

• Compiler designer decides

Best to avoid shifting signed integers

(if you must shift signed integers, make sure you’re on a 2’s complement

machine, and do a bitwise-and after shifting)

(Java does this better, with two operators: >> >>>)

43

6 >> 1 ⇒ 3

-6 >> 1 ⇒ 5

What is the effect

arithmetically???

0110B 0011B

1010B 0101B

Shifting Signed Integers (cont.)

(if you must shift signed integers, make sure you’re on a 2’s complement

machine, and do a bitwise-and after shifting)

44

Is it after 1980?
OK, then we’re surely

two’s complement

Other Operations on Signed Ints

Bitwise NOT (~ in C)
• Same as with unsigned ints

Bitwise AND (& in C)
• Same as with unsigned ints

Bitwise OR: (| in C)
• Same as with unsigned ints

Bitwise exclusive OR (^ in C)
• Same as with unsigned ints

Best to avoid with signed integers

45

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

46

Rational Numbers

Mathematics
• A rational number is one that can be expressed

as the ratio of two integers

• Infinite range and precision

Computer science
• Finite range and precision

• Approximate using floating point number

• Binary point “floats” across bits

47

IEEE Floating Point Representation

Common finite representation: IEEE floating point
• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0⇒positive, 1⇒negative)

• 8 bits: exponent + 127

• 23 bits: binary fraction of the form 1.ddddddddddddddddddddddd

Using 64 bits (type double in C):
• 1 bit: sign (0⇒positive, 1⇒negative)

• 11 bits: exponent + 1023

• 52 bits: binary fraction of the form

1.dd

48

Floating Point Example

Sign (1 bit):
• 1 ⇒ negative

Exponent (8 bits):
• 10000011B = 131

• 131 – 127 = 4

Fraction (23 bits): also called “mantissa”

• 1.10110110000000000000000B

• 1 + (1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+(1*2-

6)+(1*2-7) = 1.7109375

Number:
• -1.7109375 * 24 = -27.375

49

11000001110110110000000000000000

32-bit representation

When was floating-point invented?

mantissa
noun
decimal part of a logarithm, 1865, from Latin mantisa “a worthless
addition, makeweight,” perhaps a Gaulish word introduced into Latin via
Etruscan (cf. Old Irish meit, Welsh maint "size").

Answer: long before computers!

Floating Point Warning

Decimal number system can

represent only some rational

numbers with finite digit count
• Example: 1/3

Binary number system can

represent only some rational

numbers with finite digit count
• Example: 1/5

Beware of roundoff error
• Error resulting from inexact

representation

• Can accumulate

51

Decimal Rational

Approx Value

.3 3/10

.33 33/100

.333 333/1000

...

Binary Rational

Approx Value

0.0 0/2

0.01 1/4

0.010 2/8

0.0011 3/16

0.00110 6/32

0.001101 13/64

0.0011010 26/128

0.00110011 51/256

...

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers

Essential for proper understanding of
• C primitive data types

• Assembly language

• Machine language

52

