
Princeton University

Computer Science 217: Introduction to Programming Systems

Number Systems and Number Representation

For Your Amusement

Question: Why do computer programmers confuse Christmas and Halloween?

Answer: Because 25 Dec = 31 Oct

-- http://www.electronicsweekly.com

Goals of this Lecture

Help you learn (or refresh your memory) about:

- The binary, hexadecimal, and octal number systems
- Finite representation of unsigned integers
- Finite representation of signed integers
- Finite representation of rational numbers (if time)

Why?

• A power programmer must know number systems and data representation to fully understand C's primitive data types

Primitive values and the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

- Finite representation of signed integers
- Finite representation of rational numbers (if time)

The Decimal Number System

Name

• "decem" (Latin) \Rightarrow ten

Characteristics

- Ten symbols
 - 0 1 2 3 4 5 6 7 8 9
- Positional
 - 2945 ≠ 2495
 - $\cdot 2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

(Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From Late Latin *bīnārius* ("consisting of two").

Characteristics

- Two symbols
 - 0 1
- Positional
 - $1010_{\rm B} \neq 1100_{\rm B}$

Most (digital) computers use the binary number system

Terminology

- Bit: a binary digit
- Byte: (typically) 8 bits

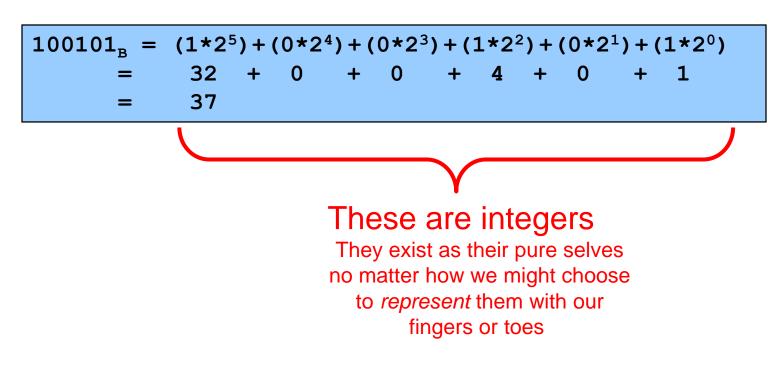
Why?

Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Decimal	Binary
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111
• • •	•••

Decimal-Binary Conversion


Binary to decimal: expand using positional notation

 $100101_{B} = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})$ = 32 + 0 + 0 + 4 + 0 + 1 = 37

Integer Decimal-Binary Conversion

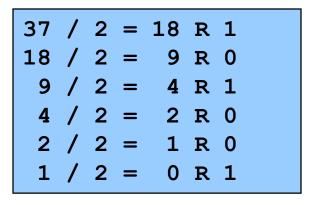
Integer Binary to decimal: expand using positional notation

Integer-Binary Conversion

Integer to binary: do the reverse

• Determine largest power of 2 ≤ number; write template

 $37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$


• Fill in template

 $37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})$ -325 -41
1
100101_B -10

Integer-Binary Conversion

Integer to binary shortcut

• Repeatedly divide by 2, consider remainder

Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

- "hexa" (Greek) \Rightarrow six
- "decem" (Latin) \Rightarrow ten
- **Characteristics**
 - Sixteen symbols
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
 - Positional
 - $A13D_{H} \neq 3DA1_{H}$

Computer programmers often use the hexadecimal number

system

Decimal-Hexadecimal Equivalence

Decimal	Hoy	Decimal He		Decimal	Hoy
0	0	16 2	10	32	20
1	1	17 :	11	33	21
2	2	18 3	12	34	22
3	3	19 3	13	35	23
4	4	20 3	14	36	24
5	5	21 3	15	37	25
6	6	22 3	16	38	26
7	7	23 3	17	39	27
8	8	24	18	40	28
9	9	25 :	19	41	29
10	A	26	1A	42	2A
11	В	27 :	1B	43	2B
12	С	28 3	1C	44	2C
13	D	29 3	1D	45	2D
14	Е	30 3	1E	46	2E
15	F	31 3	1F	47	2F

Integer-Hexadecimal Conversion

Hexadecimal to integer: expand using positional notation

$$25_{\rm H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Integer to hexadecimal: use the shortcut

37 / 16 = 2 R 5 2 / 16 = 0 R 2 Read from bottom to top: 25_H

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010 0001 0011 1101 _B			
Α	1	3	$\mathtt{D}_{\mathtt{H}}$

Hexadecimal to binary

A 1 3 D_H 1010000100111101_B Digit count in binary number not a multiple of $4 \Rightarrow$ pad with zeros on left

Discard leading zeros from binary number if appropriate

Is it clear why programmers often use hexadecimal?

The Octal Number System

Name

- "octo" (Latin) \Rightarrow eight
- **Characteristics**
 - Eight symbols
 - 0 1 2 3 4 5 6 7
 - Positional
 - $1743_{\circ} \neq 7314_{\circ}$

Computer programmers often use the octal number system

(So does Mickey Mouse!)

Agenda

Number Systems

Finite representation of unsigned integers

- Finite representation of signed integers
- Finite representation of rational numbers (if time)

Unsigned Data Types: Java vs. C

Java has type:

- int
 - Can represent signed integers
- C has type:
 - signed int
 - Can represent signed integers
 - int
 - Same as signed int
 - unsigned int
 - Can represent only unsigned integers

To understand C, must consider representation of both unsigned and signed integers

Representing Unsigned Integers

Mathematics

Range is 0 to ∞

Computer programming

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to $2^n 1$
- Exceed range ⇒ overflow

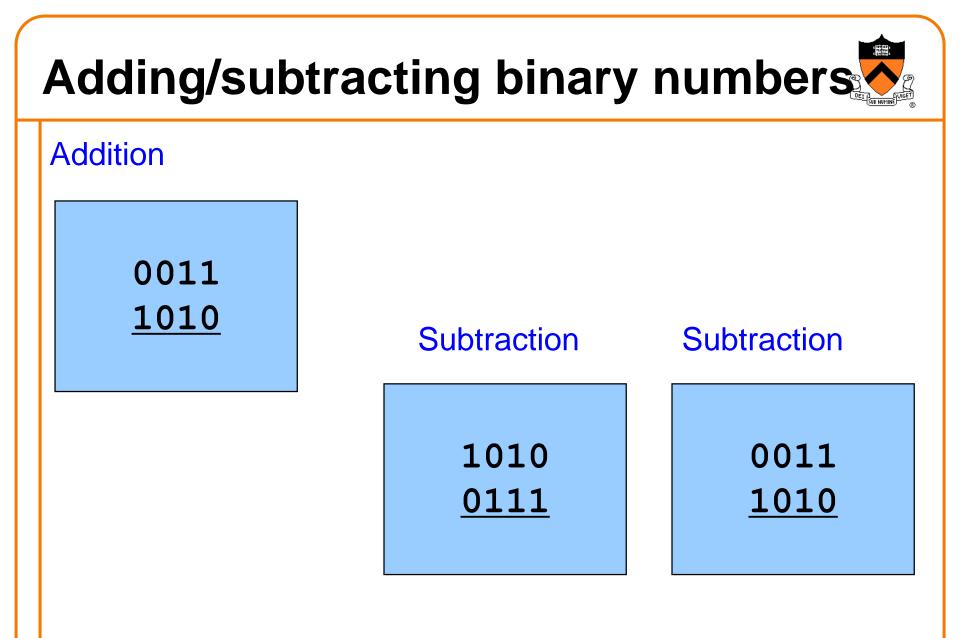
CourseLab computers

• n = 64, so range is 0 to $2^{64} - 1$ (huge!)

Pretend computer

• n = 4, so range is 0 to $2^4 - 1$ (15)

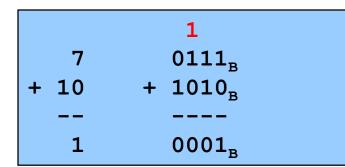
Hereafter, assume word size = 4


• All points generalize to word size = 64, word size = n

Representing Unsigned Integers

On pretend computer

Unsigned	
<u>Integer</u>	<u>Rep</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

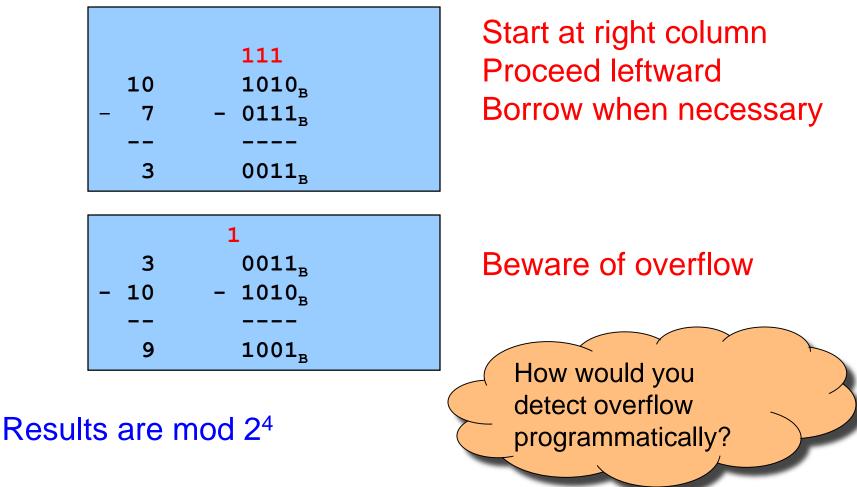

Adding Unsigned Integers

Addition

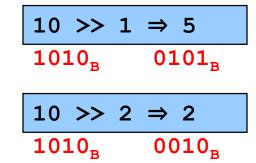
	1	
3	0011 _B	
+ 10	+ 1010 _B	
13	1101 _B	

Start at right column Proceed leftward Carry 1 when necessary

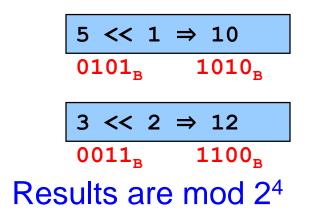
Results are mod 2⁴

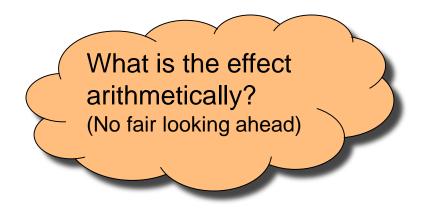


How would you detect overflow programmatically?


Subtraction

Shifting Unsigned Integers




Bitwise right shift (>> in C): fill on left with zeros

What is the effect arithmetically? (No fair looking ahead)

Bitwise left shift (<< in C): fill on right with zeros

Other Operations on Unsigned Ints

Bitwise NOT (~ in C)

• Flip each bit

$$\begin{array}{c} \sim 10 \implies 5 \\ 1010_{\rm B} \quad 0101_{\rm B} \end{array}$$

Bitwise AND (& in C)

Logical AND corresponding bits

10	1010 _B
& 7	& 0111 _B
2	^B 0010 _B

Useful for setting selected bits to 0

Other Operations on Unsigned Ints

Bitwise OR: (| in C)

Logical OR corresponding bits

Useful for setting selected bits to 1

Bitwise exclusive OR (^ in C)

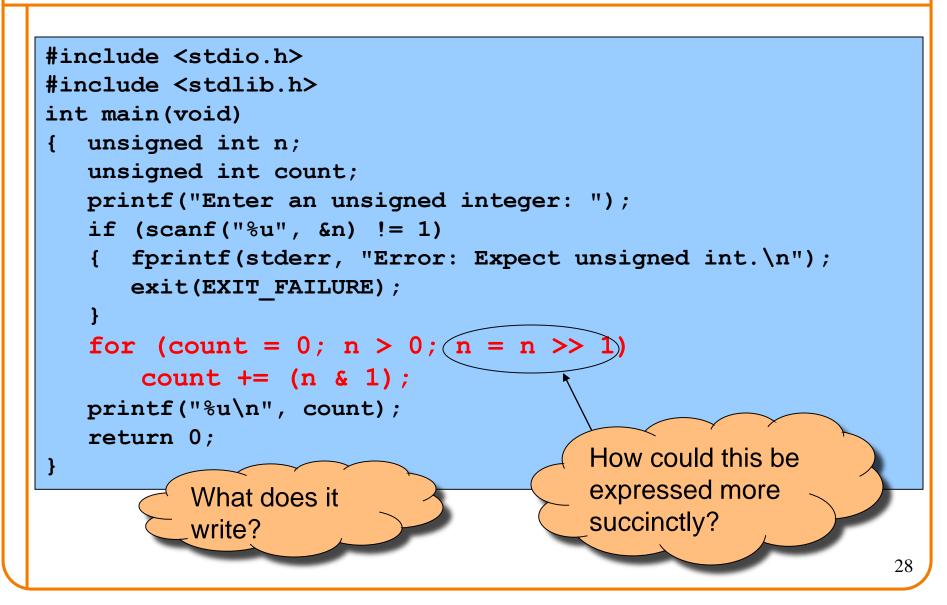
Logical exclusive OR corresponding bits

10	1010 _B
^ 10	^ 1010 _B
0	0000 _B

x ^ x sets all bits to 0

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently


- $\mathbf{x} \star 2^{\mathbf{y}} == \mathbf{x} \ll \mathbf{y}$
 - $3*4 = 3*2^2 = 3<<2 \Rightarrow 12$
- **x** / $2^{y} == x >> y$ $\cdot 13/4 = 13/2^{2} = 13>>2 \Rightarrow 3$
- $x \ \% \ 2^{y} == x \ \& \ (2^{y}-1)$

•
$$13\%4 = 13\%2^2 = 13\&(2^2-1)$$

= $13\&3 \Rightarrow 1$

Fast way to **multiply** by a power of 2 Fast way to **divide** by a power of 2 Fast way to **mod** by a power of 2

Aside: Example C Program

Aside from the aside...

Personally, I wouldn't put the (count=0) in the for(;;) initializer,

```
for (count = 0; n > 0; n = n >> 1)
    count += (n & 1);
```

because it's not really part of the loop iterator. In this case, the iterator is \mathbf{n} , which (in this case) happens to be already initialized.

So it's perhaps more straightforward to write,

```
count = 0;
for ( ; n > 0; n = n >> 1)
    count += (n & 1);
```

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Signed Magnitude

Signed Magnitude (cont.)

<u>Rep</u>
1111
1110
1101
1100
1011
1010
1001
1000
0000
0001
0010
0011
0100
0101
0110
0111

Computing negative neg(x) = flip high order bit of x $neg(0101_B) = 1101_B$ $neg(1101_B) = 0101_B$

Pros and cons

- + easy for people to understand
- + symmetric
- two representations of zero
- can't use the same "add" algorithm for both signed and unsigned numbers

Ones' Complement

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ones' Complement (cont.)

Integer	Rep
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative neg(x) = -x $neg(0101_B) = 1010_B$ $neg(1010_{B}) = 0101_{B}$ **Computing negative (alternative)** $neg(x) = 1111_{B} - x$ $neg(0101_{B}) = 1111_{B} - 0101_{B}$ $= 1010_{\rm R}$ $neg(1010_{B}) = 1111_{B} - 1010_{B}$ $= 0101_{\rm B}$ **Pros and cons** + symmetric - two reps of zero - can't use the same "add" algorithm for both signed

and unsigned numbers

Two's Complement

Integer -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	Rep10001001101010111100110111011110111100000001001000110100010101100111	Definition High-order bit has weight -8 $1010_{B} = (1*-8) + (0*4) + (1*2) + (0*1)$ = -6 $0010_{B} = (0*-8) + (0*4) + (1*2) + (0*1)$ = 2
---	---	---

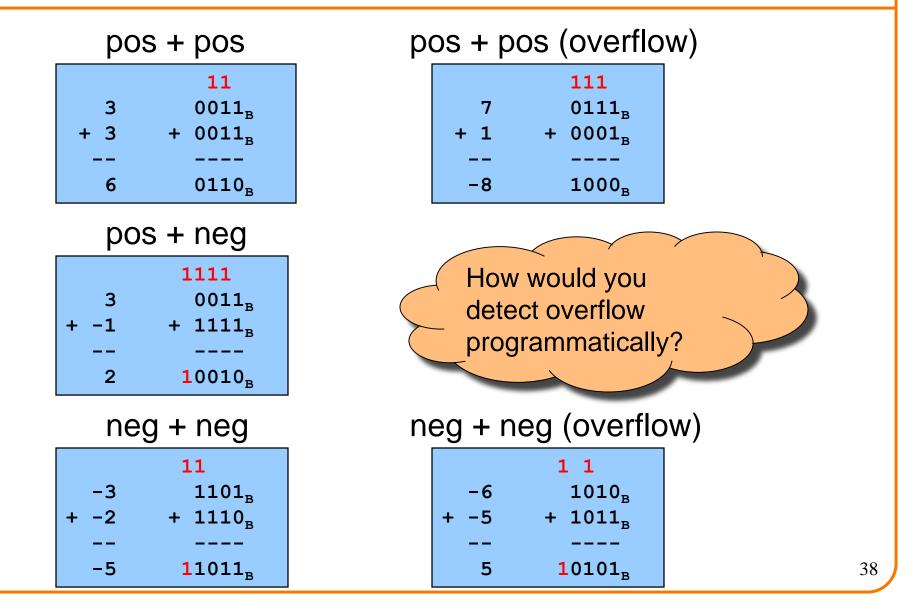
Two's Complement (cont.)

<u>Rep</u>
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

Computing negative neg(x) = -x + 1neg(x) = onescomp(x) + 1 $neg(0101_{B}) = 1010_{B} + 1 = 1011_{B}$ $neg(1011_{B}) = 0100_{B} + 1 = 0101_{B}$ Pros and cons - not symmetric + one representation of zero + same algorithm adds unsigned numbers or signed numbers

Two's Complement (cont.)

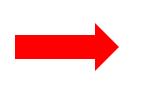
Almost all computers use two's complement to represent signed integers


Why?

- Arithmetic is easy
 - Will become clear soon

Hereafter, assume two's complement representation of signed integers

Adding Signed Integers



Subtracting Signed Integers

Perform subtraction with borrows

	1
	22
3	0011 _B
- 4	- 0100 _в
-1	1111 _B

or

Compute two's comp and add

3	0011 _B
+ -4	+ 1100 _B
-1	1111 _B

111

1011 1110

11001

-5	1011 _B
- 2	- 0010 _B
-7	1001 _B

-5 + -2

-7

Negating Signed Ints: Math

Question: Why does two's comp arithmetic work? Answer: [-b] mod 2⁴ = [twoscomp(b)] mod 2⁴

$$[-b] \mod 2^{4}$$

$$= [2^{4} - b] \mod 2^{4}$$

$$= [2^{4} - 1 - b + 1] \mod 2^{4}$$

$$= [(2^{4} - 1 - b) + 1] \mod 2^{4}$$

$$= [onescomp(b) + 1] \mod 2^{4}$$

$$= [twoscomp(b)] \mod 2^{4}$$

See Bryant & O' Hallaron book for much more info

And so:

 $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$

$$[a - b] \mod 2^{4}$$

$$= [a + 2^{4} - b] \mod 2^{4}$$

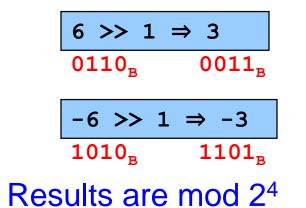
$$= [a + 2^{4} - 1 - b + 1] \mod 2^{4}$$

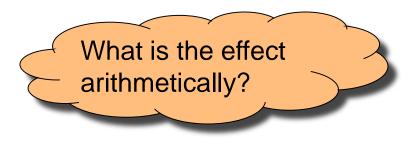
$$= [a + (2^{4} - 1 - b) + 1] \mod 2^{4}$$

$$= [a + \text{onescomp}(b) + 1] \mod 2^{4}$$

$$= [a + \text{twoscomp}(b)] \mod 2^{4}$$

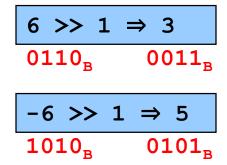
See Bryant & O' Hallaron book for much more info


Shifting Signed Integers



Bitwise left shift (<< in C): fill on right with zeros

Bitwise arithmetic right shift: fill on left with sign bit



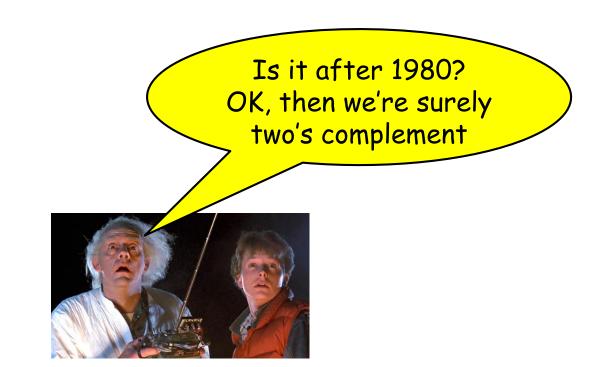


Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical or arithmetic

- Not specified by C90 standard
- Compiler designer decides


Best to avoid shifting signed integers

(if you must shift signed integers, make sure you're on a 2's complement machine, and do a bitwise-and after shifting)

(Java does this better, with two operators: >> >>)

Shifting Signed Integers (cont.)

(if you must shift signed integers, <u>make sure you're on a 2's complement</u> <u>machine</u>, and do a bitwise-and after shifting)

Other Operations on Signed Ints

Bitwise NOT (~ in C)

Same as with unsigned ints

Bitwise AND (& in C)

Same as with unsigned ints

Bitwise OR: (| in C)

Same as with unsigned ints

Bitwise exclusive OR (^ in C)

Same as with unsigned ints

Best to avoid with signed integers

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Rational Numbers

Mathematics

- A **rational** number is one that can be expressed as the **ratio** of two integers
- Infinite range and precision

Computer science

- Finite range and precision
- Approximate using floating point number
 - Binary point "floats" across bits

IEEE Floating Point Representation

Common finite representation: IEEE floating point

- More precisely: ISO/IEEE 754 standard
- Using 32 bits (type float in C):
 - 1 bit: sign (0⇒positive, 1⇒negative)
 - 8 bits: exponent + 127
 - 23 bits: binary fraction of the form 1.dddddddddddddddddddddddddd

Using 64 bits (type double in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023

Floating Point Example

Sign (1 bit):

• $1 \Rightarrow$ negative

32-bit representation

Exponent (8 bits):

- $10000011_{\rm B} = 131$
- \cdot 131 127 = 4

Fraction (23 bits): also called "mantissa"

- 1 + $(1*2^{-1}) + (0*2^{-2}) + (1*2^{-3}) + (1*2^{-4}) + (0*2^{-5}) + (1*2^{-6}) + (1*2^{-7}) = 1.7109375$

Number:

• $-1.7109375 * 2^4 = -27.375$

When was floating-point invented?

Answer: long before computers!

mantissa

noun

decimal part of a logarithm, 1865, from Latin *mantisa* "a worthless addition, makeweight," perhaps a Gaulish word introduced into Latin via Etruscan (cf. Old Irish *meit*, Welsh *maint* "size").

x 0 I 2 3	0 7	2			- 2	6	-	8		$\Delta_{\rm SN}$	Ľ	2	3	
	3		2		-	3	9.	+		1	1			
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	I	2	
51	.7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	1
53	.7160		7177			COLUMN TO A	7210		7226		8	I	2	1
53	.7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	8	I	2	1
54	.7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8	I	2	
55	.7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8	I	2	2
56	•7482	7490	7497	7505		7520	and the second se	7536	7543	7551	8	I	2	
57	.7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	8	I	2	
58	.7634	7642		7657			7679	7686	7694	7701	8	I	2	1
59	.7709		7723	and the state of t	7738	7745	7752	7760	7767	7774	7	I	I	

Floating Point Warning

Decimal number system can represent only some rational numbers with finite digit count

• Example: 1/3

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5

Beware of roundoff error

- Error resulting from inexact representation
- Can accumulate

Decimal	<u>Rational</u>
Approx	<u>Value</u>
.3	3/10
.33	33/100
.333	333/1000
•••	

Binary	Rational
Approx	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
•••	

Summary

The binary, hexadecimal, and octal number systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational numbers

Essential for proper understanding of

- C primitive data types
- Assembly language
- Machine language