"Princeton University

Computer Science 217: Introduction to Programming Systems

~

9.

~
Goals of this Lecture

A Taste of C

Help you learn about:
» The basics of C
+ Deterministic finite-state automata (DFA)
» Expectations for programming assignments

Why?
» Help you get started with Assignment 1
* Required readings...

+ + minimal coverage of C in this lecture...
+ = enough info to start Assignment 1

» DFAs are useful in many contexts
» E.g. Assignment 1, Assignment 7

» + coverage of programming environment in precepts...

~
Agenda

-
The “charcount” Program

The charcount program
The upper program

The upper1 program

Functionality:
» Read all chars from stdin (standard input stream)

» Write to stdout (standard output stream) the number
of chars read

stdin stdout

Line 1
14
e

-
The “charcount” Program

-

-
“charcount” Building and Running g!g

The program:

charcount.c

s R
“charcount” Building and Running g,!g

p
“charcount” Building and Running g,!g

~

~
“charcount” Building and Running in Detail

~
“charcount” Building and Running in Detail

9

~

Question:

» Exactly what happens when you issue the command
gcc217 charcount.c —o charcount

Answer: Four steps
» Preprocess
» Compile
» Assemble
« Link

The starting point

charcount.c

» C language

* Missing definitions
of getchar() and
printf()

-
Preprocessing “charcount”

-
Preprocessing “charcount”

Command to preprocess:
e gcc2l7 —E charcount.c > charcount.i

Preprocessor functionality
* Removes comments
» Handles preprocessor directives

charcount.c

Preprocessor replaces
#include <stdio.h>

with contents of
/usr/include/stdio.h

Preprocessor replaces
EOF with -1

-
Preprocessing “charcount”

9.

-
Preprocessing “charcount”

9.

charcount.c

Preprocessor
removes comment

The result

charcount.i

» C language
* Missing comments
» Missing preprocessor
directives
 Contains code from stdio.h
» Declarations of getchar()
and printf()
* Missing definitions of
getchar() and printf()

-
Compiling “charcount”

-
Compiling “charcount”

Command to compile:
e gcc2l7 —S charcount.i

Compiler functionality
» Translate from C to assembly language
» Use function declarations to check calls of getchar() and printf()

charcount.i

» Compiler sees function
declarations

» So compiler has enough
information to check
subsequent calls of
getchar() and printf()

-
Compiling “charcount”

-
Compiling “charcount”

charcount.i

* Definition of main() function

» Compiler checks calls of
getchar() and printf() when
encountered

» Compiler translates to
assembly language

The result: charcount.s

» Assembly language
» Missing definitions of
getchar() and printf()

4 N)
Assembling “charcount” g,!,g Assembling “charcount” g,!,g
The result:
Command to assemble: charcount.o
e gcc2l7 —c charcount.s
Assembler functionality)
* Translate from assembly language to machine language ‘ M?Chme Iarlmg.u.age
» Missing definitions of
getchar() and printf()
19) 20)
4 N)
Linking “charcount” g,!,g Linking “charcount” g,!,g
The result:
Command to link: charcount
e gcc2l7 charcount.o —o charcount
Linker functionality)
* Resolve references » Machine language
« Fetch machine language code from the standard C library + Contains definitions of
(/usr/lib/libc.a) to make the program complete getchar() and printf()
Complete! Executable!
21) 22)
4 4)
Running “charcount” Running “charcount” g,!,g
Run-time trace, referencing the original C code...
Command to run: charcount.c
= ./charcount < somefile
Computer allocates space
for c and charCount in the
stack section of memory
23) 24)

-~

N
Running “charcount”

9.

-

N
Running “charcount”

9.

Run-time trace, referencing the original C code...

charcount.c

» Computer calls getchar()
* getchar() tries to read char
from stdin
» Success = returns char
(within an int)
* Failure = returns EOF

EOF is a special non-char value that getchar()

returns to indicate failure 2)

Run-time trace, referencing the original C code...

charcount.c

Assuming c # EOF,
computer increments
charCount

%)

-~

~

9

Running “charcount”

-

~

9

Running “charcount”

Run-time trace, referencing the original C code...

charcount.c

Computer calls getchar()
again, and repeats

a

Run-time trace, referencing the original C code...

charcount.c

» Eventually getchar()
returns EOF

» Computer breaks out
of loop

* Computer calls printf()
to write charCount

%)

-~

~

9

Running “charcount”

-

Other Ways to “charcount”

9

Run-time trace, referencing the original C code...

charcount.c

» Computer executes
return stmt

* Return from main()
terminates program

Normal execution = return 0 or EXIT_SUCCESS

Abnormal execution = return EXIT_FAILURE 2)

-
Review of Example 1 g!g

Agenda

Input/Output
* Including stdio.h
 Functions getchar() and printf(Q)
» Representation of a character as an integer
* Predefined constant EOF

Program control flow
» The for and whi le statements
» The break statement
* The return statement

Operators
» Assignment: =
* Increment: ++
* Relational: == I=

2y

The charcount program
The upper program
The upper1 program

-
Example 2: “upper” g,!g

“upper” Building and Running

Functionality
* Read all chars from stdin
» Convert each lower case alphabetic char to upper case
» Leave other kinds of chars alone
» Write result to stdout

stdin stdout

Does this work? DOES THIS WORK?
It seems to work. IT SEEMS TO WORK.

|

2

-
ASCII

9

~

-

“upper” Version 1

American Standard Code for Information Interchange

Partial map

Note: Lower case and upper case letters are 32 apart

%)

~

EBCDIC

9.

~

~
Character Literals

Extended Binary Coded Decimal Interchange Code

Note: Lower case not contiguous; same for upper case

Partial map

Examples

2

p
“upper” Version 2

9

~

~
ctype.h Functions

~
ctype.h Functions

~

“upper” Final Version

-

Review of Example 2

-

Agenda

Representing characters
» ASCII and EBCDIC character sets
 Character literals (e.g., ‘A’ or ‘a’)

Manipulating characters
« Arithmetic on characters
» Functions such as islower() and toupper()

£

The charcount program
The upper program

The upper1 program

“

-

Example 3: “upper1”

-

“upper1” Building and Running

Functionality
* Read all chars from stdin
» Capitalize the first letter of each word
» “cos 217 rocks” = “Cos 217 Rocks”
» Write result to stdout

stdin stdout
cos 217 rocks Cos 217 Rocks
Does this work? Does This Work?
It seems to work. It Seems To Work.

£

©J

-

N
“upper1” Challenge

9

-

Deterministic Finite Automaton

Problem
* Must remember where you are
- Capitalize “c” in “cos”, but not “0” in “cos” or “c” in “rocks”

Solution
» Maintain some extra information
* “Inaword” vs “not in a word”

7

Deterministic Finite State Automaton (DFA)

isalpha
(print uppercase equiv)

lisalpha

(print)

lisalpha (print)
(print)

 States, one of which is denoted the start state
* Transitions labeled by chars or char categories
* Optionally, actions on transitions

)

-
“upper1” Version 1

~

9.

-
“upper1” Toward Version 2

lisalpha

isalpha

lisalpha

Problem:
» The program works, but...
 States should have names

Solution:
» Define your own named constants

e enum Statetype {NORMAL, INWORD};
» Define an enumeration type

e enum Statetype state;
 Define a variable of that type

p
“upper1” Version 2

-
“upper1” Toward Version 3

Problem:
» The program works, but...
» Deeply nested statements
* No modularity

Solution:
» Handle each state in a separate function

-
“upper1” Version 3

-
“upper1” Toward Final Version

Problem:
» The program works, but...
* No comments

Solution:
» Add (at least) function-level comments

-
Function Comments

9.

-
Function Comment Examples

9.

Function comment should describe
what the function does (from the caller’ s viewpoint)
* Input to the function
» Parameters, input streams
» Qutput from the function
* Return value, output streams, (call-by-reference parameters)

Function comment should not describe
how the function works

“)

Bad main() function comment

» Describes how the function works

Good main() function comment

« Describes what the function does from caller’ s viewpoint

)

-
“upper1” Final Version

-
“upper1” Final Version

9

Continued on
next page

W

Continued on
next page

%)

-
“upper1” Final Version

-
“upper1” Final Version

Continued on
next page

®)

“)

4 N\ N
Review of Example 3 P\ Summary P\
Deterministic finite-state automaton
» Two or more states The C ing |
« Transitions between states € & programming language
» Next state is a function of current state and current character : Overalll program stru?:greh_ le f itch
« Actions can occur during transitions * Contro statements.(l »while, for, and switch)
» Character I/0O functions (getchar () and putchar())
Expectations for COS 217 assignments T
. Readable Deterministic finite state automata (DFA)
. Meaningful names for variables and literals Expectat|ons for programming assignments
» Reasonable max nesting depth « Especially Assignment 1
* Modular
» Multiple functions, each of which does one well-defined job
» Function-level comments .
1
» Should describe what function does Start Assignment 1 soonl
» See K&P book for style guidelines specification
61/ 62/
4 N\ I
N 4 Another DFA Example P\
Does the string have “nano” in it? Double circle is
* “banano” = yes accepting state
* “nnnnnnnanofff” = yes . . .
Appendix: . :banananonano" = yes Sl_nglg circle is
- “bananananashanana” = no . rejecting state
n
ngm other
Additional DFA Examples
63/ 54/
4 I
Yet Another DFA Example P\ /4

Old Exam Question
Compose a DFA to identify whether or not
a string is a floating-point literal

Valid literals Invalid literals
. “.34” « “abc”
. “78.1" . “-e9”
- “+298.3" . “1e”
. “-34.7e-1" . 47
. “34.7E-1" . “17.9A"
. 47 . “0.38+”
« “999.99e99” - “38.389”

“)

