
1

COS 217: Introduction to
Programming Systems

Princeton University
Computer Science 217: Introduction to Programming Systems Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

2

3

Introductions: Faculty

Professor
• Andrew W. Appel appel@cs.princeton.edu

Lead Preceptors
• Robert Dondero rdondero@cs.princeton.edu
• Iasonas Petras ipetras@cs.princeton.edu
• Ananda Gunawardena (“Guna”) guna@cs.princeton.edu

4

Introductions: Teaching assistants

Preceptors
(in alphabetical order)

• Oluwatosin (Tosin) Adewale
oadewale@princeton.edu

• Mingru Bai
mingrub@princeton.edu

• Akash Kapoor
kapoor@cs.princeton.edu

• Mayank Mahajan
mmahajan@princeton.edu

• Sergiy Popovych
popovych@princeton.edu

• Gautam Sharma
gsharma@princeton.edu

• Hansen Zhang
hansenz@princeton.edu

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

5

Goal 1: Pgmming in the Large

Goal 1: Programming in the large
• Help you learn how to compose

large computer programs

Topics
• Modularity/abstraction, information hiding, resource management,

error handling, testing, debugging, performance improvement, tool
support

7

Goal 2: Under the Hood

Downward tours

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

Learn what happens
under the hood of

computer systems

Learn “how to be
a client of an

operating system”

Modular systems

9

Goals: Summary
Help you to become a...

Power Programmer!!!

Goals: Why C?

Question: Why C instead of Java?

Semi-answer: C and Java are both

very widely used in software development;

they use different approaches to memory

management; good to understand both

approaches

Answer: C is the primary language for low-level systems

(operating systems, devices)
10

Goals: Why Linux?
Question: Why Linux instead of MS Windows or MacOs?

Answer 1: Linux is the most widely used platform for
professional software development

Answers 2,3: Linux (with GNU) has excellent open-source tool suites,
doesn’t lock you in to a single proprietary vendor; Linux/GNU is elegant
and easily scriptable. (These help explain Answer 1)

11

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

12

13

Lectures

Lectures
• Describe material at conceptual (high) level
• Slides available via course website

Lecture etiquette
• Let’s start on time, please

• Please don’t use electronic devices
during lectures

• If you must phiddle with your phone
or laptop, sit in the back row where you won’t distract other students

15

Precepts
Precepts

• Describe material at the “practical” low level
• Support your work on assignments
• Hard copy handouts distributed during precepts
• Handouts available via course website

Precept etiquette
• Attend your precept
• Use SCORE to move to another precept

• Trouble See Colleen Kenny-McGinley (CS Bldg 210)
• But Colleen can’t move you into a full precept

• Must miss your precept? inform preceptors & attend another

Precepts begin Monday

16

Website

Website
• Access from http://www.cs.princeton.edu/courses/schedule

• Princeton CS → Courses → Course Schedule → COS 217
• Home page, schedule page, assignment page, policies page

17

Piazza

Piazza
• http://piazza.com/class#fall2016/cos217/
• Instructions provided in first precept

Piazza etiquette
• Study provided material before posting question

• Lecture slides, precept handouts, required readings
• Read all (recent) Piazza threads before posting question
• Don’t show your code!!!

• See course policies

Books
The Practice of Programming (recommended)

• Kernighan & Pike
• Programming in the large

Computer Systems: A Programmer s
Perspective (Third Edition) (recommended)
• Bryant & O'Hallaron
• Under the hood

C Programming: A Modern Approach
(Second Edition) (required)
• King
• C programming language and standard libraries

18

19

Manuals

Manuals (for reference only, available online)
• Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volumes 1-3
• Intel 64 and IA-32 Architectures Optimization

Reference Manual
• Using as, the GNU Assembler

See also
• Linux man command

Programming Environment

20

Your Computer

SSH

CourseLab Cluster

Linux
GNU

Your
Pgm

courselab01

Server Client

On-campus or
off-campus

courselab02

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

21

Grading

* Final assignment counts double; penalties for lateness

** Closed book, closed notes, no electronic devices

*** Did your involvement benefit the course as a whole?
• Precept attendance and participation counts

22

Course Component Percentage of Grade
Assignments * 50
Midterm Exam ** 15
Final Exam ** 25
Subjective *** 10

These
percentages are

approximate

Programming Assignments

Programming assignments
0. Introductory survey
1. De-comment program
2. String module
3. Symbol table module
4. Assembly language programs
5. Buffer overrun attack (partner from your precept)
6. Heap manager module (partner from your precept)
7. Unix shell

Assignments 0 and 1 are available now

Start early!!!

23

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

24

University rules:
2.4.5 Tutoring
An undergraduate is subject to disciplinary action if that
student makes use of any tutoring service or facility
other than that regularly authorized by the Office of the
Dean of the College.

2.4.6 General Requirements for the
Acknowledgment of Sources in Academic Work
. . . An important general rule is this: if you are unsure
whether or not to acknowledge a source, always err on
the side of caution and completeness by citing rather
than not citing.
. . .
In those cases where individual reports are submitted
based on work involving collaboration, proper
acknowledgment of the extent of the collaboration must
appear in the report. . . . each student's signature is
taken to mean that the student has contributed fairly to
the work involved . . .

Sources of help,
citing your sources

26

Policies

Study the
course Policies
web page!

Especially the assignment collaboration policies
• Violations often involve trial by Committee on Discipline
• Typical course-level penalty is F for course
• Typical University-level penalty is suspension from University for

1 academic year

Assignment Related Policies
Some highlights:

• You may not reveal any of your assignment solutions (products,
descriptions of products, design decisions) on Piazza.

• Getting help: To help you compose an assignment solution you
may use only authorized sources of information, may consult with
other people only via the course's Piazza account or via interactions
that might legitimately appear on the course's Piazza account, and
must declare your sources in your readme file for the assignment.

• Giving help: You may help other students with assignments only
via the course's Piazza account or interactions that might
legitimately appear on the course's Piazza account, and you may
not share your assignment solutions with anyone, ever, in any form.

Ask the professor for clarifications
• Only Prof. Appel can waive any policies (and only in writing)

27

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

28

29

Course Schedule

Weeks Lectures Precepts
1-2 Number Systems

C (conceptual)
Linux/GNU
C (pragmatic)

3-6 Pgmming in the Large Advanced C
6 Midterm Exam
7 Recess
8-13 Under the Hood

(conceptual)
Under the Hood

(pgmming asgts)
Reading Period

Final Exam

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

30

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Compose the Unix OS

31 32

Java vs. C: History

BCPL B C K&R C
ANSI C89
ISO C90

ISO C99
ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk C++ Java

Our compiler
supports these
only partiallyWe will use

ISO C11

2011

Java vs. C: Design Goals

33

Java Design Goals (1995) C Design Goals (1975)
Language of the Internet Compose Unix OS
High-level; insulated from
hardware and OS

Low-level; close to HW and
OS

Good for application-level
programming

Good for system-level
programming

Support object-oriented
programming

Support structured
programming

Safe: can’t step
“outside the sandbox”

Unsafe: don’t get the
programmer’s way

Look like C!

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

34

HW (CourseLab)

OS (Linux)

Building Java Programs

35

MyPgm.java
(Java code)

javac MyPgm.class
(bytecode)

$ javac MyPgm.java Java compiler
(machine lang code)

HW (CourseLab)

OS (Linux)

Running Java Programs

36

data java data

$ java MyPgm

MyPgm.class
(bytecode)

Java interpreter
(Java virtual machine)
(machine lang code)

HW (CourseLab)

OS (Linux)

Building C Programs

37

mypgm.c
(C code)

gcc217
mypgm
(machine
lang code)

$ gcc217 mypgm.c –o mypgm C compiler driver
(machine lang code)

HW (CourseLab)

OS (Linux)

Running C Programs

38

data mypgm data

$./mypgm
mypgm
(machine lang code)

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

39

Java vs. C: Portability

40

Program Code Type Portable?
MyPgm.java Java source code Yes
mypgm.c C source code Mostly

MyPgm.class Bytecode Yes
mypgm Machine lang code No

javac (Java compiler) Machine lang code No
java (Java interpreter) Machine lang code No
gcc217 (C compiler driver) Machine lang code No

Conclusion: Java programs are more portable

Java vs. C: Efficiency

41

C has manual bounds
checking, null checking,
memory management

Java has automatic
array-bounds checking,
nullpointer checking,
automatic memory
management (garbage
collection), other safety
features

Result: C programs are (often) faster

Result 2: C programs are buggy, exploitable

Java vs. C: Characteristics

42

Java C

Portability + -
Efficiency ~ +

Safety + -

Java vs. C: Characteristics

43

If this is Java…

Java vs. C: Characteristics

44

Then this is C

Agenda

Course overview
• Introductions
• Course goals
• Resources
• Grading
• Policies
• Schedule

Getting started with C
• History of C
• Building and running C

programs
• Characteristics of C
• C details (if time)

45 46

Java vs. C: Details

Remaining slides provide some details

Use for future reference

Slides covered now, as time allows…

47

Java vs. C: Details

Java C

Overall
Program
Structure

Hello.java:

public class Hello
{ public static void main

(String[] args)
{ System.out.println(

"hello, world");
}

}

hello.c:

#include <stdio.h>

int main(void)
{ printf("hello, world\n");

return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello
hello, world
$

$./hello
hello, world
$

48

Java vs. C: Details
Java C

Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned) char
(unsigned) short
(unsigned) int
(unsigned) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean
/* no equivalent */
/* use integral type */

Generic pointer
type

Object void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

49

Java vs. C: Details
Java C

Arrays
int [] a = new int [10];
float [][] b =

new float [5][20];

int a[10];
float b[5][20];

Array bound
checking

// run-time check /* no run-time check */

Pointer type
// Object reference is an
// implicit pointer

int *p;

Record type

class Mine
{ int x;

float y;
}

struct Mine
{ int x;

float y;
};

50

Java vs. C: Details
Java C

Strings
String s1 = "Hello";
String s2 = new

String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * =, !=, >, <, >=, <= =, !=, >, <, >=, <=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Assignment ops
=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, &=, ^=, |=,
%=

=, *=, /=, +=, -=, <<=,
>>=, =, &=, ^=, |=, %=

* Essentially the same in the two languages

51

Java vs. C: Details
Java C

if stmt *

if (i < 0)
statement1;

else
statement2;

if (i < 0)
statement1;

else
statement2;

switch stmt *

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

goto stmt // no equivalent goto someLabel;

* Essentially the same in the two languages
52

Java vs. C: Details
Java C

for stmt
for (int i=0; i<10; i++)

statement;

int i;
for (i=0; i<10; i++)

statement;

while stmt *
while (i < 0)

statement;
while (i < 0)

statement;

do-while stmt *
do

statement;
while (i < 0)

do
statement;

while (i < 0);

continue stmt * continue; continue;

labeled continue
stmt

continue someLabel; /* no equivalent */

break stmt * break; break;

labeled break
stmt

break someLabel; /* no equivalent */

* Essentially the same in the two languages

53

Java vs. C: Details
Java C

return stmt *
return 5;
return;

return 5;
return;

Compound stmt
(alias block) *

{
statement1;
statement2;

}

{
statement1;
statement2;

}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method / function
call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

* Essentially the same in the two languages
54

Example C Program
#include <stdio.h>
#include <stdlib.h>

int main(void)
{ const double KMETERS_PER_MILE = 1.609;

int miles;
double kMeters;

printf("miles: ");
if (scanf("%d", &miles) != 1)
{ fprintf(stderr, "Error: Expected a number.\n");

exit(EXIT_FAILURE);
}

kMeters = (double)miles * KMETERS_PER_MILE;
printf("%d miles is %f kilometers.\n",

miles, kMeters);
return 0;

}

55

Summary

Course overview
• Introductions
• Course goals

• Goal 1: Learn programming in the large
• Goal 2: Look under the hood and learn low-level programming
• Use of C and Linux supports both goals

• Resources
• Lectures, precepts, programming environment, Piazza, textbooks
• Course website: access via http://www.cs.princeton.edu

• Grading
• Policies
• Schedule

56

Summary

Getting started with C
• History of C
• Building and running C programs
• Characteristics of C
• Details of C

• Java and C are similar
• Knowing Java gives you a head start at learning C

57

Getting Started

Check out course website soon
• Study Policies page
• First assignment is available

Establish a reasonable computing environment soon
• Instructions given in first precept

