
Chapter 6

Linear Thinking

According to conventional wisdom, linear thinking describes thought process that is logical
or step-by-step (i.e., each step must be completed before the next one is undertaken).
Nonlinear thinking, on the other hand, is the opposite of linear: creative, original, capable
of leaps of inference, etc.

From a complexity-theoretic viewpoint, conventional wisdom turns out to be startlingly
right in this case: linear problems are generally computationally easy, and nonlinear prob-
lems are generally not.

Example 3 Solving linear systems of equations is easy. Let’s show solving quadratic sys-
tems of equations is NP-hard. Consider the vertex cover problem, which is NP-hard:
Given graph G = (V, E) and an integer k we need to determine if there a subset of vertices
S of size k such that for each edge {i, j}, at least one of i, j is in S.

We can rephrase this as a problem involving solving a system of nonlinear equations,
where xi = 1 stands for “i is in the vertex cover.”

(1 � xi)(1 � xj) = 0 8 {i, j} 2 E

xi(1 � xi) = 0 8i 2 V.
X

i

xi = k

⇤

Not all nonlinear problems are di�cult, but the ones that turn out to be easy are
generally those that can leverage linear algebra (eigenvalues, singular value decomposition,
etc.)

In mathematics too linear algebra is simple, and easy to understand. The goal of much
of higher mathematics seems to be to reduce study of complicated (nonlinear!) objects to
study of linear algebra.

6.1 Simplest example: Solving systems of linear equations

The following is a simple system of equations.

28

29

2x
1

� 3x
2

= 5

3x
1

+ 4x
2

= 6

More generally we represent a linear system of m equations in n variables as Ax = b
where A is an m ⇥ n coe�cient matrix, x is a vector of n variables, and b is a vector of m
real numbers. In your linear algebra course you learnt that this system is feasible i↵ b is in
the span of the column vectors of A, namely, the rank of A|b (i.e., the matrix where b is
tacked on as a new column of A) has rank exactly the same as A. The solution is computed
via matrix inversion. One subtlety not addressed in most linear algebra courses is whether
this procedure is polynomial time. You may protest that actually they point out that the
system can be solved in O(n3) operations. Yes, but this misses a crucial point which we
will address before the end of the lecture.

6.2 Systems of linear inequalities and linear programming

If we replace some or all of the = signs with � or in a system of linear equations we
obtain a system of linear inequalities.

Figure 6.1: A system of linear inequalities and its feasible region

The feasible region has sharp corners; it is a convex region and is called a polytope.
In general, a region of space is called convex if for every pair of points x, y in it, the line
segment joining x, y, namely, {� · x + (1 � �) · y : � 2 [0, 1]}, lies in the region.

In Linear Programming one is trying to optimize (i.e., maximize or minimize) a linear
function over the set of feasible values. The general form of an LP is

min cTx (6.1)

Ax � b (6.2)

Here � denotes componentwise ”greater than.”

30

Figure 6.2: Convex and nonConvex regions

This form is very flexible. To express maximization instead of minimization, just replace
c by �c. To include an inequality of the form a·x bi just write it as �a·x � �bi. To include
an equation a · x = bi as a constraint just replace with two inequalities a · x � bi, a · x bi.

Solving LPs: In Figure 6.1 we see the convex feasible region of an LP. The objective
function is linear, so it is clear that the optimum of the linear program is attained at some
vertex of the feasible region. Thus a trivial algorithm to find the optimum is to enumerate
all vertices of the feasible region and take the one with the lowest value of the objective.
This method (sometimes taught in high schools) of graphing the inequalities and their
feasible region does not scale well with n, m. The number of vertices of this feasible region
grows roughly as mn/2 in general. Thus the algorithm is exponential time. The famous
simplex method is a clever way to enumerate these vertices one by one, ensuring that the
objective keeps decreasing at each step. It works well in practice, but there is no proof that
it runs in polynomial time. (Several variants are known to require exponential time in the
worst case.) The first polynomial-time method to determine feasibility of linear inequalities
was only discovered in 1979 by Khachiyan, a Soviet mathematician. We will discuss the
core ideas of this method later in the course. For now, we just assume polynomial-time
solvability and see how to use LP as a tool.

Example 4 (Assignment Problem) Suppose n jobs have to be assigned to n factories. Each
job has its attendant requirements and raw materials. Suppose all of these are captured by
a single number: cij is the cost of assigning job i to factory j. Let xij be a variable that
corresponds to assigning job i to factory j. We hope this variable is either 0 or 1 but that
is not expressible in the LP so we relax this to the constraint

xij � 0 and xij 1 for each i, j.

Each job must be assigned to exactly one factory so we have the constraint
P

j xij = 1 for
each job i. Then we must ensure each factory obtains one job, so we include the constraint
P

i xij = 1 for each factory j. Finally, we want to minimize overall cost so the objective is

min
X

ij

cijxij .

31

Fact: the solution to this LP has the property that all xij variables are either 0 or 1.
(Maybe this will be a future homework.) Thus solving the LP actually solves the assignment
problem.

In general one doesn’t get so lucky: solutions to LPs end up being nonintegral no matter
how hard we pray for the opposite outcome. Next lecture we will discuss what to do if that
happens.2

In fact linear programming was invented in 1939 by Kontorovich, a Russian mathematician,
to enable e�cient organization of industrial production and other societal processes (such
as the assignment problem). The premise of communist economic system in the 1940s and
1950s was that centralized planning —using linear programming!— would enable optimum
use of a society’s resources and help avoid the messy “ine�ciencies”of the market system!
The early developers of linear programming were awarded the Nobel prize in economics!
Alas, linear programming has not proved su�cient to ensure a perfect economic system.
Nevertheless it is extremely useful and popular in optimizing flight schedules, trucking
operations, tra�c control, manufacturing methods, etc. At one point it was estimated
that 50% of all computation in the world was devoted to LP solving. Then youtube was
invented...

6.3 Linear modeling

At the heart of mathematical modeling is the notion of a system of variables: some variables
are mathematically expressed in terms of others. In general this mathematical expression
may not be succinct or even finite (think of the infinite processes captured in the quantum
theory of elementary particles). A linear model is a simple way to express interrelationships
that are linear.

y = 0.1x
1

+ 9.1x
2

� 3.2x
3

+ 7.

Example 5 (Diet) You wish to balance meat, sugar, veggies, and grains in your diet. You
have a certain dollar budget and a certain calorie goal. You don’t like these foodstu↵s
equally; you can give them a score between 1 and 10 according to how much you like them.
Let lm, ls, lv, lg denote your score for meat, sugar, veggies and grains respectively. Assuming
your overall happiness is given by

m ⇥ lm + g ⇥ lg + v ⇥ lv + s ⇥ ls,

where m, g, v, s denote your consumption of meat, grain, veggies and sugar respectively
(note: this is a modeling assumption about you) then the problem of maximizing your
happiness subject to a dollar and calorie budget is a linear program. 2

Example 6 (`
1

regression) This example is from Bob Vanderbei’s book on linear program-
ming. You are given data containing grades in di↵erent courses for various students; say
Gij is the grade of student i in course j. (Of course, Gij is not defined for all i, j since
each student has only taken a few courses.) You can try to come up with a model for
explaining these scores. You hypothesize that a student’s grade in a course is determined

32

by the student’s innate aptitude, and the di�culty of the course. One could try various
functional forms for how the grade is determined by these factors, but the simplest form to
try is linear. Of course, such a simple relationship will not completely explain the data so
you must allow for some error. This linear model hypothesizes that

Gij = aptitudei + easinessj + ✏ij , (6.3)

where ✏ij is an error term.
Clearly, the error could be positive or negative. A good model is one that has a low

value of
P

ij |✏ij |. Thus the best model is one that minimizes this quantity.
We can solve this model for the aptitude and easiness scores using an LP. We have

the constraints in (6.3) for each student i and course j. Then for each i, j we have the
constraints

sij � 0 and � sij ✏ij sij .

Finally, the objective is min
P

ij sij .
This method of minimizing the sum of absolute values is called `

1

-regression because
the `

1

norm of a vector x is
P

i |xi|. 2

Just as LP is the tool of choice to squeeze out ine�ciencies of production and planning,
linear modeling is the bedrock of data analysis in science and even social science.

Example 7 (Econometric modeling) Econometrics is the branch of economics dealing with
analysis of empirical data and understanding the causal interrelationships of the underlying
economic variables —also useful in sociology, political science etc.. It often relies upon
modeling dependencies among variables using linear expressions. Usually the variables
have a time dependency. For instance it may a posit a relationship of the form

Growth(T + 1) = ↵ · Interest rate(T) + � · Deficit(T � 1) + ✏(T),

where Interest rate(T) denotes say the interest rate at time T , etc. Here ↵, � may not be
constant and may be probabilistic variables (e.g., a random variable uniformly distributed in
[0.5, 0.8]) since future growth may not be a deterministic function of the current variables.

Often these models are solved (i.e., for ↵, � in this case) by regression methods related
to the previous example, or more complicated probabilistic inference methods that we may
study later in the course.2

Example 8 (Perceptrons and Support Vector Machines in machine learning) Suppose you
have a bunch of images labeled by whether or not they contain a car. These are data
points of the form (x, y) where x is n-dimensional (n= number of pixels in the image)and
yi 2 {0, 1} where 1 denotes that it contains a car. You are trying to train an algorithm
to recognize cars in other unlabeled images. There is a general method called SVM’s that
allows you to find some kind of a linear model. (Aside: such simple linear models don’t
work for finding cars in images; this is an example.) This involves hypothesizing that there
is an unknown set of coe�cients ↵

0

, ↵
1

, ↵
2

, . . . , ↵n such that

X

i

↵ixi � ↵
0

+ errorx if x is an image containing a car,

33

X

i

↵ixi 0.5↵
0

+ errorx if x does not contain a car,

where errorx is required to be nonpositive for each x. Then finding such ↵i’s while minimiz-
ing the sum of the absolute values of the error terms is a linear program. After finding these
↵i’s, given a new image the program tries to predict whether it has a car by just checking
whether

P

i ↵ixi � ↵
0

or 0.5↵
0

. (There is nothing magical about the 0.5 gap here; one
usually stipulates a gap or margin between the yes and no cases.)

This technique is related to the so-called support vector machines in machine learning
(and an older model called perceptrons), though we’re dropping a few technical details (
`
2

-regression, regularization etc.). Also, in practice it could be that the linear explanation
is a good fit only after you first apply a nonlinear transformation on the x’s. This is the
idea in kernel SVMs. For instance perhaps the correct classifier is quadratic; then we can
lift the n-dimensional vector x to the n2 dimensional vector x ⌦ x whose (i, j) coordinate
is xixj . The SVM can then be trained on these lifted vectors. The idea of Kernel SVMs
makes this training more e�cient, without having to do a lifting of x. Maybe we will return
to them when we study convex programming.

One reason for the popularity of linear models is that the mathematics is simple, elegant,
and most importantly, e�cient. Thus if the number of variables is large, a linear model is
easiest to solve.

A theoretical justification for linear modeling is Taylor expansion, according to which
every “well-behaved”function is expressible as an infinite series of terms involving the deriva-
tives. Here is the Taylor series for an m-variate function f :

f(x
1

, x
2

, . . . , xm) = f(0, 0, .., 0) +
X

i

xi
@f

@xi
(0) +

X

i
1

i
2

xi
1

xi
2

@f

@xi
1

@xi
2

(0) + · · · .

If we assume the higher order terms are negligible, we obtain a linear expression.
Whenever you see an article in the newspaper describing certain quantitative relation-

ships —eg, the e↵ect of more policing on crime, or the e↵ect of certain economic policy
on interest rates—chances are it has probably been obtained via a linear model and `

1

regression (or the related `
2

regression). So don’t put blind faith in those numbers; they
are necessarily rough approximations to the complex behavior of a complex world.

6.4 Meaning of polynomial-time

Of course, the goal in this course is designing polynomial-time algorithms. When a problem
definition involves numbers, the correct definition of polynomial-time is “polynomial in the
number of bits needed to represent the input. ”

Thus the input size of an m⇥n system Ax = b is not mn but the number of bits used to
represent A, b, which is at most mnL where L denotes the number of bits used to represent
each entry of A, b. We assume that the numbers in A, b are rational, and in fact by clearing
denominators we may assume wlog they are integer.

Let’s return to the question we raised earlier: is Gaussian elimination a polynomial-
time procedure? The answer is yes. The reason this is nontrivial is that conceivably during

34

Gaussian elimination we may produce a number that is too large to represent. We have to
show it runs in poly(m, n, L) time.

Towards this end, first note that standard arithmetic operations +, �, ⇥ run in time
polynomial in the input size (e.g., multiplying two k-bit integers takes time at most O(k2)
even using the gradeschool algorithm).

Next, note that by Cramer’s rule for solving linear systems, the numbers produced during
the algorithm are related to the determinant of n⇥n submatrices of A. For example if A is
invertible then the solution to Ax = b is x = A�1b, and the i, j entry of A�1 is Cij/det(A),
where Cij is a cofactor, i.e. an (n�1)⇥(n�1) submatrix of A. The determinant of an n⇥n
matrix whose entries are L bit integers is at most n!2Ln. This follows from the formula for
determinant of an n ⇥ n matrix, which is

det(A) =
X

�

sgn(�)
Y

i

Ai�(i),

where � ranges over all permutations of n elements.
The number of bits used to represent determinant is the log of this, which is n log n+Ln,

which is indeed polynomial. Thus doing arithmetic operations on these numbers is also
polynomial-time.

The above calculation has some consequence for linear programming as well. Recall
that the optimum of a linear program is attained at a vertex of the polytope. The vertex
is defined as the solution of all the equations obtained from the inequalities that are tight
there. We conclude that each vertex of the polytope can be represented by n log n+Ln bits.
This at least shows that the solution can be written down in polynomial time (a necessary
precondition for being able to compute it in polynomial time!).

