
Chapter 3

Large deviations bounds and
applications

Today’s topic is deviation bounds: what is the probability that a random variable deviates
from its mean by a lot? Recall that a random variable X is a mapping from a probability
space to R. The expectation or mean is denoted E[X] or sometimes as µ.

In many settings we have a set of n random variables X
1

, X
2

, X
3

, . . . , Xn defined on
the same probability space. To give an example, the probability space could be that of all
possible outcomes of n tosses of a fair coin, and Xi is the random variable that is 1 if the
ith toss is a head, and is 0 otherwise, which means E[Xi] = 1/2.

The first observation we make is that of the Linearity of Expectation, viz.

E[
X

i

Xi] =
X

i

E[Xi]

It is important to realize that linearity holds regardless of the whether or not the random
variables are independent.

Can we say something about E[X
1

X
2

]? In general, nothing much but if X
1

, X
2

are
independent events (formally, this means that for all a, b Pr[X

1

= a, X
2

= b] = Pr[X
1

=
a]Pr[X

2

= b]) then E[X
1

X
2

] = E[X
1

]E[X
2

].
Note that if the Xi’s are pairwise independent (i.e., each pair are mutually independent)

then this means that var[
P

i Xi] =
P

i var[Xi].

3.1 Three progressively stronger tail bounds

Now we give three methods that give progressively stronger bounds.

3.1.1 Markov’s Inequality (aka averaging)

The first of a number of inequalities presented today, Markov’s inequality says that any
non-negative random variable X satisfies

Pr (X � k E[X])  1

k
.
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Note that this is just another way to write the trivial observation that E[X] � k ·Pr[X � k].
Can we give any meaningful upperbound on Pr[X < c · E[X]] where c < 1, in other

words the probability that X is a lot less than its expectation? In general we cannot.
However, if we know an upperbound on X then we can. For example, if X 2 [0, 1] and
E[X] = µ then for any c < 1 we have (simple exercise)

Pr[X  cµ]  1 � µ

1 � cµ
.

Sometimes this is also called an averaging argument.

Example 1 Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

3.1.2 Chebyshev’s Inequality

The variance of a random variable X is one measure (there are others too) of how “spread
out”it is around its mean. It is defined as E[(x � µ)2] = E[X2] � µ2.

A more powerful inequality, Chebyshev’s inequality, says

Pr[|X � µ| � k�]  1

k2

,

where µ and �2 are the mean and variance of X. Recall that �2 = E[(X�µ)2] = E[X2]�µ2.
Actually, Chebyshev’s inequality is just a special case of Markov’s inequality: by definition,

E
⇥|X � µ|2⇤ = �2,

and so,

Pr
⇥|X � µ|2 � k2�2

⇤  1

k2

.

Here is simple fact that’s used a lot: If Y
1

, Y
2

, . . . , Yt are iid (which is jargon for inde-
pendent and identically distributed) then the variance of their average 1

k

P

i Yt is exactly 1/t
times the variance of one of them. Using Chebyshev’s inequality, this already implies that
the average of iid variables converges sort-of strongly to the mean.

Example: Load balancing

Suppose we toss m balls into n bins. You can think of m jobs being randomly assigned to
n processors. Let X = number of balls assigned to the first bin. Then E[X] = m/n. What
is the chance that X > 2m/n? Markov’s inequality says this is less than 1/2.

To use Chebyshev we need to compute the variance of X. For this let Yi be the indicator
random variable that is 1 i↵ the ith ball falls in the first bin. Then X =

P

i Yi. Hence

E[X2] = E[
X

i

Y 2

i + 2
X

i<j

YiYj ] =
X

i

E[Y 2

i ] +
X

i<j

E[YiYj ].

Now for independent random variables E[YiYj ] = E[Yi]E[Yj ] so E[X2] = m
n + m(m�1)

n2

.
Hence the variance is very close to m/n, and thus Chebyshev implies that the probability
that Pr[X > 2m

n ] < n
m . When m > 3n, say, this is stronger than Markov.
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3.1.3 Large deviation bounds

When we toss a coin many times, the expected number of heads is half the number of tosses.
How tightly is this distribution concentrated? Should we be very surprised if after 1000
tosses we have 625 heads?

The Central Limit Theorem says that the sum of n independent random variables (with
bounded mean and variance) converges to the famous Gaussian distribution (popularly
known as the Bell Curve). This is very useful in algorithm design: we maneuver to de-
sign algorithms so that the analysis boils down to estimating the sum of independent (or
somewhat independent) random variables.

To do a back of the envelope calculation, if all n coin tosses are fair (Heads has probability
1/2) then the Gaussian approximation implies that the probability of seeing N heads where
|N � n/2| > a

p
n/2 is at most e�a2/2. The chance of seeing at least 625 heads in 1000

tosses of an unbiased coin is less than 5.3 ⇥ 10�7. These are pretty strong bounds!
This kind of back-of-the-envelope calculations using the Gaussian approximation will

get most of the credit in homeworks.
In general, for finite n the sum of n random variables need not be an exact Gaussian;

this is particularly true if the variables are not identically distributed and well-behaved like
the random coin tosses above. That’s where Cherno↵ bounds come in. (By the way these
bounds are also known by other names in di↵erent fields since they have been independently
discovered.)

First we give an inequality that works for general variables that are real-valued in [�1, 1].
This is not correct as stated but is good enough for your use in this course.

Theorem 2 (Inexact! Only a qualitative version)
If X

1

, X
2

, . . . , Xn are independent random variables and each Xi 2 [�1, 1]. Let µi = E[Xi]
and �2

i = var[Xi]. Then X =
P

i Xi satisfies

Pr[|X � µ| > k�]  2 exp(�k2

4
),

where µ =
P

i µi and �2 =
P

i �
2

i . Also, k  �/2 (say).

Instead of proving the above we prove a simpler theorem for binary valued variables
which showcases the basic idea.

Theorem 3
Let X

1

, X
2

, . . . , Xn be independent 0/1-valued random variables and let pi = E[Xi], where
0 < pi < 1. Then the sum X =

Pn
i=1

Xi, which has mean µ =
Pn

i=1

pi, satisfies

Pr[X � (1 + �)µ]  (c�)
µ

where c� is shorthand for
⇥

e�

(1+�)(1+�)

⇤

.

Remark: There is an analogous inequality that bounds the probability of deviation below
the mean, whereby � becomes negative and the � in the probability becomes  and the c�
is very similar.
Proof: Surprisingly, this inequality also is proved using the Markov inequality, albeit
applied to a di↵erent random variable.
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We introduce a positive constant t (which we will specify later) and consider the random
variable exp(tX): when X is a this variable is exp(ta). The advantage of this variable is
that

E[exp(tX)] = E[exp(t
X

i

Xi)] = E[
Y

i

exp(tXi)] =
Y

i

E[exp(tXi)], (3.1)

where the last equality holds because the Xi r.v.s are independent, which implies that
exp(tXi)’s are also independent. Now,

E[exp(tXi)] = (1 � pi) + pie
t,

therefore,

Y

i

E[exp(tXi)] =
Y

i

[1 + pi(e
t � 1)] 

Y

i

exp(pi(e
t � 1))

= exp(
X

i

pi(e
t � 1)) = exp(µ(et � 1)),

(3.2)

as 1 + x  ex. Finally, apply Markov’s inequality to the random variable exp(tX), viz.

Pr[X � (1 + �)µ] = Pr[exp(tX) � exp(t(1 + �)µ)]  E[exp(tX)]

exp(t(1 + �)µ)
=

exp((et � 1)µ)

exp(t(1 + �)µ)
,

using lines (3.1) and (3.2) and the fact that t is positive. Since t is a dummy variable, we can
choose any positive value we like for it. The right hand size is minimized if t = ln(1+�)—just
di↵erentiate—and this leads to the theorem statement. 2

The following is the more general inequality for variables that do not lie in [�1, 1]. It is
proved similarly to Cherno↵ bound.

Theorem 4 (Hoeffding)
Suppose X

1

, X
2

, . . . , Xn are independent r.v.’s, with ai  Xi  bi. If X =
P

i Xi and
µ = E[X] then

Pr[X � µ > t]  exp(� t2
P

i(bi � ai)2
).

3.2 Application 1: Sampling/Polling

Opinion polls and statistical sampling rely on tail bounds. Suppose there are n arbitrary
numbers in [0, 1] If we pick t of them randomly (with replacement!) then the sample mean
is within ±✏ of the true mean with probability at least 1 � � if t > ⌦( 1

✏2
log 1/�). (Verify

this calculation!)
In general, Cherno↵ bounds implies that taking k independent estimates and taking

their mean ensures that the value is highly concentrated about their mean; large deviations
happen with exponentially small probability.
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3.3 Balls and Bins revisited: Load balancing

Suppose we toss m balls into n bins. You can think of m jobs being randomly assigned to
n processors. Then the expected number of balls in each bin is m/n. When m = n this
expectation is 1 but we saw in Lecture 1 that the most overloaded bin has ⌦(log n/ log log n)
balls. However, if m = cn log n then the expected number of balls in each bin is c log n.
Thus Cherno↵ bounds imply that the chance of seeing less than 0.5c log n or more than
1.5c log n is less than �c logn for some constant � (which depends on the 0.5, 1.5 etc.) which
can be made less than say 1/n2 by choosing c to be a large constant.

Moral: if an o�ce boss is trying to allocate work fairly, he/she should first create more
work and then do a random assignment.

3.4 What about the median?

Given n numbers in [0, 1] can we approximate the median via sampling? This will be part
of your homework.
Exercise: Show that it is impossible to estimate the value of the median within say 1.1
factor with o(n) samples.

But what is possible is to produce a number that is an approximate median: it is greater
than at least n/2 � n/t numbers below it and less than at least n/2 � n/t numbers. The
idea is to take a random sample of a certain size and take the median of that sample. (Hint:
Use balls and bins.)

One can use the approximate median algorithm to describe a version of quicksort with
very predictable performance. Say we are given n numbers in an array. Recall that (random)
quicksort is the sorting algorithm where you randomly pick one of the n numbers as a pivot,
then partition the numbers into those that are bigger than and smaller than the pivot (which
takes O(n) time). Then you recursively sort the two subsets.

This procedure works in expected O(n log n) time as you may have learnt in an undergrad
course. But its performance is uneven because the pivot may not divide the instance into
two exactly equal pieces. For instance the chance that the running time exceeds 10n log n
time is quite high.

A better way to run quicksort is to first do a quick estimation of the median and then
do a pivot. This algorithm runs in very close to n log n time, which is optimal.


